cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048853 Number of primes (different from n) that can be produced by altering one digit of decimal expansion of n (without changing the number of digits).

Original entry on oeis.org

4, 3, 3, 4, 3, 4, 3, 4, 4, 4, 7, 4, 8, 4, 4, 4, 7, 4, 7, 2, 7, 2, 6, 2, 2, 2, 7, 2, 5, 2, 5, 2, 8, 2, 2, 2, 5, 2, 7, 3, 6, 3, 7, 3, 3, 3, 6, 3, 8, 2, 7, 2, 6, 2, 2, 2, 7, 2, 5, 2, 5, 2, 8, 2, 2, 2, 5, 2, 7, 3, 6, 3, 7, 3, 3, 3, 8, 3, 6, 2, 7, 2, 6, 2, 2, 2, 7, 2, 5, 1, 6, 1, 7, 1, 1, 1, 4, 1, 6, 4, 10, 4, 8, 4, 4
Offset: 1

Views

Author

Keywords

Comments

a(A192545(n)) = 0. - Reinhard Zumkeller, Jul 05 2011

Examples

			Altering the number 13 gives eight primes: 11, 17, 19, 23, 43, 53, 73, 83, so a(13)=8.
		

Crossrefs

Programs

  • Haskell
    import Data.List (inits, tails, nub)
    a048853 n = (sum $ map (a010051 . read) $ tail $ nub $ concat $ zipWith
      (\its tls -> map ((\xs ys d -> xs ++ (d:ys)) its tls) "0123456789")
        (map init $ tail $ inits $ show n) (tail $ tails $ show n)) - a010051 n
    -- Reinhard Zumkeller, Jul 05 2011
    
  • Maple
    A048853 := proc(n::integer) local resul,ddigs,d,c,tmp ; resul := 0 ; ddigs := convert(n,base,10) ; for d from 1 to nops(ddigs) do for c from 0 to 9 do if c = 0 and d = nops(ddigs) then continue ; else if c <> op(d,ddigs) then tmp := [op(1..d-1,ddigs),c,op(d+1..nops(ddigs),ddigs)] ; tst := sum(op(i,tmp)*10^(i-1),i=1..nops(tmp)) ; if isprime(tst) then resul := resul+1 ; fi ; fi ; fi ; od : od ; RETURN(resul) ; end: for n from 1 to 90 do printf("%d,",A048853(n)) ; od ; # R. J. Mathar, Apr 25 2006
  • Mathematica
    a[n_] := Module[{idn = IntegerDigits[n], id, np = 0}, Do[id = idn; If[ id[[j]] != k, id[[j]] = k; If[ id[[1]] != 0 && PrimeQ[ FromDigits[id]], np = np + 1]], {j, 1, Length[idn]}, {k, 0, 9}]; np]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Dec 01 2011 *)
  • Python
    from sympy import isprime
    def h1(n): # hamming distance 1 neighbors of n, not starting with 0
        s = str(n); d = "0123456789"; L = len(s)
        yield from (int(s[:i]+c+s[i+1:]) for c in d for i in range(L) if c!=s[i] and not (i==0 and c=="0"))
    def a(n): return sum(1 for k in h1(n) if isprime(k))
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Jul 31 2022