cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048855 Number of integers up to n! relatively prime to n!.

Original entry on oeis.org

1, 1, 1, 2, 8, 32, 192, 1152, 9216, 82944, 829440, 8294400, 99532800, 1194393600, 16721510400, 250822656000, 4013162496000, 64210599936000, 1155790798848000, 20804234379264000, 416084687585280000, 8737778439290880000, 192231125664399360000
Offset: 0

Views

Author

Keywords

Comments

Rephrasing the Quet formula: Begin with 1. Then, if n + 1 is prime subtract 1 and multiply. If n+1 is not prime, multiply. Continue writing each product. Thus the sequence would begin 1, 2, 8, . . . . The first product is 1*(2 - 1), second is 1*(3 - 1), and third is 2*4. - Enoch Haga, May 06 2009

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, page 134.

Crossrefs

Programs

  • Maple
    with(numtheory):a:=n->phi(n!): seq(a(n), n=0..20); # Zerinvary Lajos, Oct 07 2007
  • Mathematica
    Table[ EulerPhi[ n! ], {n, 0, 21}] (* Robert G. Wilson v, Nov 21 2003 *)
  • PARI
    a(n)=eulerphi(n!) \\ Charles R Greathouse IV, May 12 2011
    
  • Python
    from math import factorial, prod
    from sympy import primerange
    from fractions import Fraction
    def A048855(n): return (factorial(n)*prod(Fraction(p-1,p) for p in primerange(n+1))).numerator # Chai Wah Wu, Jul 06 2022
  • Sage
    [euler_phi(factorial(n)) for n in range(0,21)] # Zerinvary Lajos, Jun 06 2009
    

Formula

a(n) = phi(n!) = A000010(n!).
If n is composite, then a(n) = a(n-1)*n. If n is prime, then a(n) = a(n-1)*(n-1). - Leroy Quet, May 24 2007
Under the Riemann Hypothesis, a(n) = n! / (e^gamma * log n) * (1 + O(log n/sqrt(n))). - Charles R Greathouse IV, May 12 2011
Sum_{k=1..n} a(k) = exp(-gamma) * (n!/log(n)) * (1 + O(1/log(n)^3)), where gamma is Euler's constant (A001620) (De Koninck and Verreault, 2024, p. 56, eq. (4.12)). - Amiram Eldar, Dec 10 2024

Extensions

Name changed by Daniel Forgues, Aug 01 2011