cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048901 Indices of hexagonal numbers which are also heptagonal.

Original entry on oeis.org

1, 247, 79453, 25583539, 8237820025, 2652552464431, 854113655726677, 275021944591525483, 88556212044815478769, 28514825256485992638055, 9181685176376444813974861, 2956474111967958744107267107
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (2 + sqrt(5))^4 = 161 + 72*sqrt(5). - Ant King, Dec 24 2011

Crossrefs

Programs

  • Magma
    I:=[1, 247, 79453]; [n le 3 select I[n] else 323*Self(n-1)-323*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Dec 28 2011
  • Mathematica
    LinearRecurrence[{323, -323, 1}, {1, 247, 79453}, 12]; (* Ant King, Dec 24 2011 *)

Formula

G.f.: x*(-1 + 76*x + 5*x^2) / ( (x-1)*(x^2 - 322*x + 1) ). - R. J. Mathar, Dec 21 2011
From Ant King, Dec 24 2011: (Start)
a(n) = 322*a(n-1) - a(n-2) - 80.
a(n) = (1/40)*sqrt(5)*((1+sqrt(5))*(sqrt(5)+2)^(4*n-3) + (1-sqrt(5))*(sqrt(5)-2)^(4*n-3) + 2*sqrt(5)).
a(n) = ceiling((1/40)*sqrt(5)*(1+sqrt(5))*(sqrt(5)+2)^(4*n-3)).
(End)