cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048902 Indices of heptagonal numbers (A000566) which are also hexagonal.

Original entry on oeis.org

1, 221, 71065, 22882613, 7368130225, 2372515049741, 763942477886281, 245987105364332645, 79207083984837225313, 25504435056012222218045, 8212348880951950716985081, 2644350835231472118646977941
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (2 + sqrt(5))^4 = 161 + 72*sqrt(5). - Ant King, Dec 26 2011

Crossrefs

Programs

  • Magma
    I:=[1, 221, 71065]; [n le 3 select I[n] else 323*Self(n-1)-323*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Dec 28 2011
  • Mathematica
    LinearRecurrence[{323, -323, 1}, {1, 221, 71065}, 12]; (* Ant King, Dec 26 2011 *)

Formula

G.f.: -x*(1 - 102*x + 5*x^2) / ( (x-1)*(x^2 - 322*x + 1) ). - R. J. Mathar, Dec 21 2011
From Ant King, Dec 26 2011: (Start)
a(n) = 322*a(n-1) - a(n-2) - 96.
a(n) = (1/20)*((sqrt(5)+1)*(sqrt(5)+2)^(4*n-3) + (sqrt(5)-1)*(sqrt(5)-2)^(4*n-3) + 6).
a(n) = ceiling((1/20)*(sqrt(5)+1)*(sqrt(5)+2)^(4*n-3)).
(End)