cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048903 Heptagonal hexagonal numbers.

Original entry on oeis.org

1, 121771, 12625478965, 1309034909945503, 135723357520344181225, 14072069153115290487843091, 1459020273797576190840203197981, 151274140013808225465578657485241095, 15684405383452644158924550174544564031953, 1626190518815862911671806985731550830475727995
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity,a(n)/a(n-1)) = (2+sqrt(5))^8 = 51841+23184*sqrt(5). - Ant King, Dec 24 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{103683, -103683, 1}, {1, 121771, 12625478965}, 8]; (* Ant King, Dec 24 2011 *)
  • PARI
    Vec(-x*(55*x^2+18088*x+1)/((x-1)*(x^2-103682*x+1)) + O(x^20)) \\ Colin Barker, Jun 23 2015

Formula

From Ant King, Dec 24 2011: (Start)
G.f.: x*(1+18088*x+55*x^2)/((1-x)*(1-103682*x+x^2)).
a(n) = 103683*a(n-1)-103683*a(n-2)+a(n-3).
a(n) = 103682*a(n-1)-a(n-2)+18144.
a(n) = 1/80*((sqrt(5)-1)*(2+sqrt(5))^(8n-5)- (sqrt(5)+1)*(2-sqrt(5))^(8n-5)-14).
a(n) = floor(1/80*(sqrt(5)-1)*(2+sqrt(5))^(8n-5)).
(End)