A048901
Indices of hexagonal numbers which are also heptagonal.
Original entry on oeis.org
1, 247, 79453, 25583539, 8237820025, 2652552464431, 854113655726677, 275021944591525483, 88556212044815478769, 28514825256485992638055, 9181685176376444813974861, 2956474111967958744107267107
Offset: 1
-
I:=[1, 247, 79453]; [n le 3 select I[n] else 323*Self(n-1)-323*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Dec 28 2011
-
LinearRecurrence[{323, -323, 1}, {1, 247, 79453}, 12]; (* Ant King, Dec 24 2011 *)
A048902
Indices of heptagonal numbers (A000566) which are also hexagonal.
Original entry on oeis.org
1, 221, 71065, 22882613, 7368130225, 2372515049741, 763942477886281, 245987105364332645, 79207083984837225313, 25504435056012222218045, 8212348880951950716985081, 2644350835231472118646977941
Offset: 1
-
I:=[1, 221, 71065]; [n le 3 select I[n] else 323*Self(n-1)-323*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Dec 28 2011
-
LinearRecurrence[{323, -323, 1}, {1, 221, 71065}, 12]; (* Ant King, Dec 26 2011 *)
A342300
Least nonnegative number greater than the previous number which is simultaneously an n-gonal and (n+1)-gonal number.
Original entry on oeis.org
0, 1, 3, 36, 9801, 40755, 121771, 297045, 631125, 1212751, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 49146175, 65151801, 85076025, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391, 401087665, 483498225, 578925051, 688851955, 814871421
Offset: 0
a(3) is the least triangular and square number > 3, which is 36: A001110(2).
a(4) is the least square and pentagonal number > 36, which is 9801: A036353(2).
-
a[n_] := Intersection[ Table[ PolygonalNumber[n, i], {i, 2, 10000}], Table[ PolygonalNumber[n + 1, i], {i, 2, 10000}]][[1]]; a[0] = 0; a[1] = 1; Array[a, 30, 0] (* Or *)
a[n_] := a[n] = 6a[n - 1] -15a[n - 2] +20a[n - 3] -15a[n - 4] +6a[n - 5] -a[n - 6]; a[0] = 0; a[1] = 1; a[2] = 3; a[3] = 36; a[4] = 9801; a[5] = 40755; a[6] = 121771; a[7] = 297045; a[8] = 631125; a[9] = 1212751; Array[a, 30, 0]
A378245
Numbers that are both k-gonal and (k+1)-gonal for some k >= 3.
Original entry on oeis.org
1, 36, 1225, 9801, 40755, 41616, 121771, 297045, 631125, 1212751, 1413721, 2158695, 3617601, 5773825, 8851275, 13117251, 18886285, 26523981, 36450855, 48024900, 49146175, 65151801, 85076025, 94109401, 109597411, 139468635, 175520325, 218664901, 269900415, 330314391
Offset: 1
a(2) = 36 is both the 8th triangular and the 6th square number.
a(3) = 1225 is both the 49th triangular and the 35th square number.
a(5) = 40755 is both the 165th pentagonal number and the 143th hexagonal number.
The subdiagonal of
A189216 is also a subsequence.
-
upto(limit) = my(terms=List(1)); for(k=3, oo, my(found=0); for(n=2, oo, my(a = (2*n - 1)^2, b = (4*n*(3*n - 5) + 6), c = (8*(n-1)^2 + 1), s = (a*k^2 - b*k + c), v = n * (n*k - k - 2*n + 4) / 2); if(issquare(s), my(t = sqrtint(s) + k - 3); if(t % (2*(k-1)) == 0, listput(terms, v); found += 1)); if(v >= limit, break)); if(found == 0, break)); Vec(vecsort(terms)); \\ Daniel Suteu, Dec 08 2024
Showing 1-4 of 4 results.
Comments