cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048905 Indices of octagonal numbers which are also heptagonal.

Original entry on oeis.org

1, 315, 151669, 73103983, 35235967977, 16983663460771, 8186090552123485, 3945678662460058839, 1901808929215196236753, 916667958203062126055947, 441832054044946729562729541, 212962133381706120587109582655, 102647306457928305176257256110009
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->oo} a(n)/a(n-1) = (sqrt(5)+sqrt(6))^4 = 241+44*sqrt(30). - Ant King, Dec 30 2011

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{483,-483,1},{1,315,151669},20] (* Vincenzo Librandi, Dec 28 2011 *)

Formula

G.f.: -x*(1-168*x+7*x^2) / ( (x-1)*(x^2-482*x+1) ). - R. J. Mathar, Dec 21 2011
From Ant King, Dec 30 2011: (Start)
a(n) = 482*a(n-1)-a(n-2)-160.
a(n) = 1/120*((2*sqrt(5)+5*sqrt(6))*(sqrt(5)+sqrt(6))^(4*n-3) + (2*sqrt(5)-5*sqrt(6))*(sqrt(5)-sqrt(6))^(4*n-3)+40).
a(n) = ceiling(1/120*(2*sqrt(5)+5*sqrt(6))*(sqrt(5)+sqrt(6))^(4*n-3)). (End)