A048909 9-gonal (or nonagonal) triangular numbers.
1, 325, 82621, 20985481, 5330229625, 1353857339341, 343874433963061, 87342752369278225, 22184715227362706161, 5634830324997758086741, 1431224717834203191326125, 363525443499562612838749081, 92334031424171069457850940521, 23452480456295952079681300143325
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..416
- S. C. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5, December 2011, pp. 339-350.
- Eric Weisstein's World of Mathematics, Nonagonal Triangular Number.
- Index entries for linear recurrences with constant coefficients, signature (255,-255,1).
Programs
-
Maple
CP := n -> 1+1/2*9*(n^2-n): N:=10: u:=8: v:=1: x:=9: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+63*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
-
Mathematica
LinearRecurrence[{255, -255, 1}, {1, 325, 82621}, 12]; (* Ant King, Nov 03 2011 *)
-
PARI
Vec(-x*(x^2+70*x+1)/((x-1)*(x^2-254*x+1)) + O(x^20)) \\ Colin Barker, Jun 22 2015
Formula
Define x(n) + y(n)*sqrt(63) = (9+sqrt(63))*(8+sqrt(63))^n, s(n) = (y(n)+1)/2; then a(n) = (2+9*(s(n)^2-s(n)))/2. - Steven Schlicker, Apr 24 2007
a(n+1) = 254*a(n+1)-a(n)+72. - Richard Choulet, Sep 22 2007
a(n+1) = 127*a(n+1)+36+6*(448*a(n)^2+256*a(n)+25)^0.5. - Richard Choulet, Sep 22 2007
G.f.: z*(1+70*z+z^2)/((1-z)*(1-254*z+z^2)). - Richard Choulet, Sep 22 2007
From Ant King, Nov 03 2011: (Start)
a(n) = 255*a(n-1) - 255*a(n-2) + a(n-3).
a(n) = 1/112*(9*(8 + 3*sqrt(7))^(2n-1) + 9*(8-3* sqrt(7))^(2n-1) - 32).
a(n) = floor(9/112*(8 + 3*sqrt(7))^(2n-1)).
Limit_{n -> oo} a(n)/a(n-1) = (8 + 3*sqrt(7))^2. (End)
Extensions
Edited by N. J. A. Sloane at the suggestion of Richard Choulet, Sep 22 2007
Comments