cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048924 9-gonal octagonal numbers.

Original entry on oeis.org

1, 631125, 286703855361, 130242107189808901, 59165603001256545014625, 26877395137662573622784125461, 12209701798707362366915379264832801, 5546550074879110936730454426529871893125
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (sqrt(6) + sqrt(7))^8 = 227137 + 35048*sqrt(42). - Ant King, Jan 03 2012

Crossrefs

Programs

  • Magma
    I:=[1, 631125, 286703855361]; [n le 3 select I[n] else 454275*Self(n-1)-454275*Self(n-2)+Self(n-3): n in [1..10]]; // Vincenzo Librandi, Dec 24 2011
  • Mathematica
    LinearRecurrence[{454275,-454275,1},{1,631125,286703855361},30] (* Vincenzo Librandi, Dec 24 2011 *)

Formula

a(n) = 454275*a(n-1) - 454275*a(n-2) + a(n-3). - Vincenzo Librandi, Dec 24 2011
From Ant King, Jan 03 2012: (Start)
G.f.: x*(1 + 176850*x + 261*x^2) / ((1-x)*(1 - 454274*x + x^2)).
a(n) = 454274*a(n-1) - a(n-2) + 177112.
a(n) = (1/672)*((11*sqrt(7) - 9*sqrt(6))*(sqrt(6) + sqrt(7))^(8*n-5) - (11*sqrt(7) + 9*sqrt(6))*(sqrt(6) - sqrt(7))^(8*n-5) - 262).
a(n) = floor((1/672)*(11*sqrt(7) - 9*sqrt(6))*(sqrt(6) + sqrt(7))^(8*n-5)). (End)

A048923 Indices of octagonal numbers which are also 9-gonal.

Original entry on oeis.org

1, 459, 309141, 208360351, 140434567209, 94652689938291, 63795772583840701, 42998256068818693959, 28980760794611215887441, 19532989777311890689441051, 13165206129147419713467380709
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->infinity} a(n)/a(n-1) = (sqrt(6) + sqrt(7))^4 = 337 + 52*sqrt(42). - Ant King, Jan 03 2012

Crossrefs

Programs

  • Magma
    I:=[1, 459, 309141]; [n le 3 select I[n] else 675*Self(n-1)-675*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 24 2011
  • Mathematica
    LinearRecurrence[{675,-675,1},{1,459,309141},30] (* Vincenzo Librandi, Dec 24 2011 *)

Formula

G.f.: x*(-1 + 216*x + 9*x^2) / ( (x-1)*(x^2 - 674*x + 1) ). - R. J. Mathar, Dec 21 2011
From Ant King, Jan 03 2012: (Start)
a(n) = 674*a(n-1) - a(n-2) - 224.
a(n) = (1/168)*((7*sqrt(6) + 2*sqrt(7))*(sqrt(6) + sqrt(7))^(4*n-3) + (7*sqrt(6) - 2*sqrt(7))*(sqrt(6) - sqrt(7))^(4*n-3) + 56).
a(n) = ceiling((1/168)*(7*sqrt(6) + 2*sqrt(7))*(sqrt(6) + sqrt(7))^(4*n-3)). (End)
Showing 1-2 of 2 results.