A048925 Discriminants of imaginary quadratic fields with class number 24 (negated).
695, 759, 1191, 1316, 1351, 1407, 1615, 1704, 1736, 1743, 1988, 2168, 2184, 2219, 2372, 2408, 2479, 2660, 2696, 2820, 2824, 2852, 2856, 2915, 2964, 3059, 3064, 3127, 3128, 3444, 3540, 3560, 3604, 3620, 3720, 3864, 3876, 3891, 3899, 3912
Offset: 0
Links
- Andy Huchala, Table of n, a(n) for n = 0..510 (first 40 terms from Eric Weisstein)
- Eric Weisstein's World of Mathematics, Class Number.
- Index entries for sequences related to quadratic fields
Programs
-
Mathematica
Reap[ For[n = 1, n < 4000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 24, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
-
Sage
ls = [(QuadraticField(-n, 'a').discriminant(),QuadraticField(-n, 'a').class_number()) for n in (0..10000) if is_fundamental_discriminant(-n) and not is_square(n)]; [-a[0] for a in ls if a[1] == 24] # Andy Huchala, Feb 15 2022