cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046125 Number of negative fundamental discriminants having class number n.

Original entry on oeis.org

9, 18, 16, 54, 25, 51, 31, 131, 34, 87, 41, 206, 37, 95, 68, 322, 45, 150, 47, 350, 85, 139, 68, 511, 95, 190, 93, 457, 83, 255, 73, 708, 101, 219, 103, 668, 85, 237, 115, 912, 109, 339, 106, 691, 154, 268, 107, 1365, 132, 345, 159, 770, 114, 427, 163, 1205, 179, 291
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 9 because the discriminants {-3,-4,-7,-8,-11,-19,-43,-67,-163} are the only ones with class number 1.
		

Crossrefs

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
    k = 1; t = Table[0, {125}]; While[k < 2000001, If[ FundamentalDiscriminantQ@ -k, a = NumberFieldClassNumber@ Sqrt@ -k; If[a < 126, t[[a]]++]]; k++]; t (* Robert G. Wilson v Jun 01 2011 *)
  • PARI
    lista(nn=10^7) = {my(NMAX=100, v = vector(NMAX), c); for (k=1, nn, if (isfundamental(-k), if ((c = qfbclassno(-k)) <= NMAX, v[c] ++););); v;} \\ Michel Marcus, Feb 17 2022

Formula

From Amiram Eldar, Apr 15 2025: (Start)
Formulas from Soundararajan (2007):
Sum_{k=1..n} a(k) = (3*zeta(2)/zeta(3)) * n^2 + O(n^2 * log(n)^(-1/2+eps)).
a(n) << n^2 * log(log(n))^4 / log(n). (End)

Extensions

Edited by Robert G. Wilson v, May 13 2003
Corrected and extended by Dean Hickerson, May 20 2003. The values were obtained by transcribing and combining data from Tables 1-3 of Buell's paper, which has information for all values of n up to 125.

A056987 Discriminants of imaginary quadratic fields with class number 25 (negated).

Original entry on oeis.org

479, 599, 1367, 2887, 3851, 4787, 5023, 5503, 5843, 7187, 7283, 7307, 7411, 8011, 8179, 9227, 9923, 10099, 11059, 11131, 11243, 11867, 12211, 12379, 12451, 12979, 14011, 14923, 15619, 17483, 18211, 19267, 19699, 19891, 20347, 21107, 21323
Offset: 1

Views

Author

Keywords

Comments

Sequence contains 95 members; largest is 93307.
The class group of Q[sqrt(-d)] is isomorphic to C_5 X C_5 for d = 12451 and 37363. For all other d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_25. - Jianing Song, Dec 01 2019

Crossrefs

Programs

  • Mathematica
    Reap[ For[n = 1, n < 22000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 25, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)

A191410 Class number, k, of n, i.e.; imaginary quadratic fields negated Q(sqrt(-n))=k, or 0 if n is not a fundamental discriminant (A003657).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 4, 4, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 3, 4, 0, 0, 6, 2, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0
Offset: 1

Views

Author

Robert G. Wilson v, Jun 01 2011

Keywords

Crossrefs

a(n)= 0: n/a The complement of A003657; a(n)= 1: A014602; a(n)= 2: A014603; a(n)= 3: A006203; a(n)= 4: A013658; a(n)= 5: A046002; a(n)= 6: A046003; a(n)= 7: A046004; a(n)= 8: A046005; a(n)= 9: A046006; a(n)=10: A046007; a(n)=11: A046008; a(n)=12: A046009; a(n)=13: A046010; a(n)=14: A046011; a(n)=15: A046012; a(n)=16: A046013; a(n)=17: A046014; a(n)=18: A046015; a(n)=19: A046016; a(n)=20: A123563; a(n)=21: A046018; a(n)=22: A171724; a(n)=23: A046020; a(n)=24: A048925; a(n)=25: A056987; etc.

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
    f[n_] := If[ !FundamentalDiscriminantQ@ -n, 0, NumberFieldClassNumber@ Sqrt@ -n]; Array[f, 105]
  • PARI
    a(n)=if(isfundamental(-n),qfbclassno(-n),0) \\ Charles R Greathouse IV, Nov 20 2012
Showing 1-3 of 3 results.