A093435 Duplicate of A048964.
2, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
n=1: prime(1) = 2, 3! > 2, a(1) = 3. n=2: prime(1)*prime(2) = 6, 4! > 6, a(2) = 4.
Module[{nn=100,prmorl,fctorl},prmolr=FoldList[Times, Prime[Range[ nn]]]; fctorl=Range[nn]!;Table[Position[fctorl,?(#>prmolr[[n]]&),1,1],{n,70}]]//Flatten (* _Harvey P. Dale, Jul 04 2021 *)
a(n) = my(k=1, p=vecprod(primes(n))); while(k! <= p, k++); k; \\ Michel Marcus, Feb 18 2021
For n = 26: a(26) = 34 since there are 33 factorials below the 26th primorial.
fn[n_] := Module[{k = 1, r = n}, While[r >= 1, k++; r /= k]; k - 1]; prim[n_] := Times @@ Prime[Range[n]]; a[1] = 2; a[n_] := fn[prim[n]] + 1; Array[a, 100] (* Amiram Eldar, Feb 09 2025 *)
a(9) = 7 because p#_6 = 30030 < 9! = 362880 < p#_7 = 510510.
Primorial[n_] := Product[ Prime[i], {i, n}]; f[n_] := Block[{k = 1}, While[ Primorial[k] < n!, k++ ]; k]; Table[ f[n], {n, 75}]
Comments