A048967 Number of even entries in row n of Pascal's triangle (A007318).
0, 0, 1, 0, 3, 2, 3, 0, 7, 6, 7, 4, 9, 6, 7, 0, 15, 14, 15, 12, 17, 14, 15, 8, 21, 18, 19, 12, 21, 14, 15, 0, 31, 30, 31, 28, 33, 30, 31, 24, 37, 34, 35, 28, 37, 30, 31, 16, 45, 42, 43, 36, 45, 38, 39, 24, 49, 42, 43, 28, 45, 30, 31, 0, 63, 62, 63, 60, 65, 62, 63, 56, 69, 66, 67
Offset: 0
Examples
Row 4 is 1 4 6 4 1 with 3 even entries so a(4)=3.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
Programs
-
Haskell
import Data.List (transpose) a048967 n = a048967_list !! n a048967_list = 0 : xs where xs = 0 : concat (transpose [zipWith (+) [1..] xs, map (* 2) xs]) -- Reinhard Zumkeller, Nov 14 2014, Nov 24 2012
-
Mathematica
Table[n + 1 - Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ], {n, 0, 100} ] a[n_] := n + 1 - 2^DigitCount[n, 2, 1]; Array[a, 100, 0] (* Amiram Eldar, Jul 27 2023 *)
-
PARI
a(n)=if(n<1,0,if(n%2==0,a(n/2)+n/2,2*a((n-1)/2)))
-
Python
def A048967(n): return n+1-(1<
Chai Wah Wu, May 03 2023
Formula
a(n) = n+1 - A001316(n) = n+1 - 2^A000120(n) = n+1 - Sum_{k=0..n} (C(n, k) mod 2) = Sum_{k=0..n} ((1 - C(n, k)) mod 2).
a(2n) = a(n) + n, a(2n+1) = 2a(n). - Ralf Stephan, Oct 07 2003
A249304(n+1) = a(n+1) + a(n). - Reinhard Zumkeller, Nov 14 2014
G.f.: 1/(1 - x)^2 - Product_{k>=0} (1 + 2*x^(2^k)). - Ilya Gutkovskiy, Jul 19 2019
Comments