cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048988 Primes of the form 4*k^2 + 4*k + 59.

Original entry on oeis.org

59, 67, 83, 107, 139, 179, 227, 283, 347, 419, 499, 587, 683, 787, 1019, 1283, 1427, 1579, 1907, 2083, 2267, 2459, 2659, 3083, 3307, 3539, 3779, 4027, 4283, 4547, 5099, 5387, 5683, 5987, 6299, 6619, 6947, 7283, 8707, 9467, 9859, 10259, 10667, 11083
Offset: 1

Views

Author

Keywords

Comments

From Peter Bala, Apr 18 2018: (Start)
Let P(n) = 4*n^2 + 4*n + 59. The polynomial 1/2*P(n-1/2) = 2*n^2 + 29 has prime values for n from 0 to 28. See A007641. Also P(n-14) = 4*n^2 - 108*n + 787 is prime for the 28 consecutive values of n from 0 to 27.
The sequence of 28 values of the polynomial 4*P((n-2)/4) = n^2 + 232 for n from -1 to 26 is [233, 2^3*29, 233, 2^2*59, 241, 2^3*31, 257, 2^2*67, 281, 2^3*37, 313, 2^2*83, 353, 2^3*47, 401, 2^2*107, 457, 2^3*61, 521, 2^2*139, 593, 2^3*79, 673, 2^2*179, 761, 2^3*101, 857, 2^2*227], and consists of 7 groups of 4 numbers of the form p_1, 2^3*p_2, p_3, 2^2*p_4, where the p's are prime numbers. (End)

Crossrefs

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 4*n^2 +4*n + 59]; // Vincenzo Librandi, Nov 19 2010
    
  • Maple
    select(isprime, [4*k*(k+1)+59$k=0..100])[];  # Alois P. Heinz, Apr 16 2025
  • Mathematica
    Select[(4 #^2 + 4 # + 59) & /@ Range[0, 100], PrimeQ] (* Robert Price, Apr 16 2025 *)
  • PARI
    lista(nn) = for(k=0, nn, if(isprime(p=4*k^2+4*k+59), print1(p, ", "))); \\ Altug Alkan, Apr 18 2018