cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072692 Sum of sigma(j) for 1<=j<=10^n, where sigma(j) is the sum of the divisors of j.

Original entry on oeis.org

1, 87, 8299, 823081, 82256014, 8224740835, 822468118437, 82246711794796, 8224670422194237, 822467034112360628, 82246703352400266400, 8224670334323560419029, 822467033425357340138978, 82246703342420509396897774, 8224670334241228180927002517
Offset: 0

Views

Author

Rick L. Shepherd, Jul 02 2002

Keywords

Examples

			For n=1, the sum of sigma(j) for j<=10 is 1+3+4+7+6+12+8+15+13+18=87, so a(1)=87 (=69+18=A049000(1)+A046915(1)).
		

Crossrefs

Compare with A049000. Note that a(n) = A049000(n) + A046915(n).
Cf. A000203 (sigma(n)), A072691 (Pi^2/12), A049000, A046915, A024916, A025281.

Programs

  • PARI
    for(m=0,10,print1(sum(n=1,k=10^m,n*(k\n)),",")) \\ Improved by M. F. Hasler, Apr 18 2015
    
  • PARI
    A072692(n)=A024916(10^n) \\ This is very efficient, using efficient code of A024916. - M. F. Hasler, Apr 18 2015
  • Python
    [(i, sum([d*(10**i//d) for d in range(1,10**i+1)])) for i in range(8)] # Seth A. Troisi, Jun 27 2010
    
  • Python
    from math import isqrt
    def A072692(n): return -(s:=isqrt(m:=10**n))**2*(s+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023
    

Formula

Asymptotic formula: a(n) ~ Pi^2/12 * 10^2n. See A072691 for Pi^2/12. Observe that A025281 also contains that constant in its asymptotic formula.

Extensions

More terms from P L Patodia (pannalal(AT)usa.net), Jan 11 2008, Jun 25 2008
Corrected by N. J. A. Sloane, Jun 08 2008, following suggestions from Don Reble and David W. Wilson

A046915 Sum of divisors of 10^n.

Original entry on oeis.org

1, 18, 217, 2340, 24211, 246078, 2480437, 24902280, 249511591, 2497558338, 24987792457, 249938963820, 2499694822171, 24998474116998, 249992370597277, 2499961853010960, 24999809265103951, 249999046325618058, 2499995231628286897
Offset: 0

Views

Author

Keywords

Comments

A072692(n) = A049000(n) + a(n).
a(n) is the number of full-dimensional lattices in Z^(n+1) with volume 10. - Álvar Ibeas, Nov 29 2015

Examples

			At 10^1 the factors are 1, 2, 5, 10. The sum of these factors is 18: 1 + 2 + 5 + 10.
		

Crossrefs

Cf. A000203 (sigma(n)), A049000, A072692. 10th row of A160870, shifted.

Programs

  • Magma
    [1/4*(2^(n+1)-1)*(5^(n+1)-1): n in [0..20]]; // Vincenzo Librandi, Oct 03 2011
    
  • Mathematica
    Table[DivisorSigma[1, 10^n], {n, 0, 18}] (* Jayanta Basu, Jun 30 2013 *)
  • PARI
    Vec(-(10*x^2-1)/((x-1)*(2*x-1)*(5*x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Jan 27 2015
    
  • PARI
    a(n) = sigma(10^n); \\ Altug Alkan, Dec 04 2015

Formula

a(n) = 1/4*(2^(n+1)-1)*(5^(n+1)-1). E.g., a(1) = 1/4*(2^2-1)*(5^2-1) = 18. - Vladeta Jovovic, Dec 18 2001
a(n) = 18*a(n-1)-97*a(n-2)+180*a(n-3)-100*a(n-4). - Colin Barker, Jan 27 2015
G.f.: -(10*x^2-1) / ((x-1)*(2*x-1)*(5*x-1)*(10*x-1)). - Colin Barker, Jan 27 2015

A049030 Sum of sigma(j) for 1<=j<10^n, where sigma(j) = A048050(j) is the sum of the proper divisors >1 of j (excluding 1 and n).

Original entry on oeis.org

16, 3034, 320243, 32226805, 3224444759, 322465138002, 32246681892518, 3224670122682648, 322467031114802292, 32246703322412473945, 3224670334023621455211, 322467033422357645316809, 32246703342390510922780778, 3224670334240928188556405242
Offset: 1

Views

Author

Keywords

Examples

			For n = 1, the sum of sigma(j), for j < 10 is 0 + 0 + 0 + 2 + 0 + 5 + 0 + 6 + 3 = 16, so a(1) = 16.
		

Crossrefs

Cf. A072691 (Pi^2/12).

Formula

At a(3) = 320243, for example, take a(3) from A049000: 820741 - 500498 = 320243. Compute 500498 from 999*1000/2 = 499500, split evenly and reverse to 500499 - 1 = 500498. Add a 9 and 0 for each successive term.
a(n) = A049000(n) - 10^n * (10^n + 1) / 2 + 2 ~ (Pi^2/12 - 1/2) * 10^(2*n). - Amiram Eldar, Feb 16 2020

Extensions

More terms from Amiram Eldar, Feb 16 2020
Showing 1-3 of 3 results.