A049001 a(n) = prime(n)^2 - 2.
2, 7, 23, 47, 119, 167, 287, 359, 527, 839, 959, 1367, 1679, 1847, 2207, 2807, 3479, 3719, 4487, 5039, 5327, 6239, 6887, 7919, 9407, 10199, 10607, 11447, 11879, 12767, 16127, 17159, 18767, 19319, 22199, 22799, 24647, 26567, 27887
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Barry Brent, On the constant terms of certain meromorphic modular forms for Hecke groups, arXiv:2212.12515 [math.NT], 2022.
- Barry Brent, On the Constant Terms of Certain Laurent Series, Preprints (2023) 2023061164.
Programs
-
Haskell
a049001 = subtract 2 . a001248 -- Reinhard Zumkeller, Jul 30 2015
-
Maple
A049001:=n->ithprime(n)^2-2; seq(A049001(k), k=1..50); # Wesley Ivan Hurt, Oct 11 2013
-
Mathematica
Table[Prime[n]^2-2, {n, 50}] (* Wesley Ivan Hurt, Oct 11 2013 *)
-
PARI
a(n) = prime(n)^2 - 2; \\ Amiram Eldar, Nov 07 2022
Formula
a(n) = A001248(n) - 2.
a(n) = A182200(n) + 1. - Wesley Ivan Hurt, Oct 11 2013
Product_{n>=1} (1 - 1/a(n)) = A065481. - Amiram Eldar, Nov 07 2022
Comments