A049007 Continued fraction for i^i = exp(-Pi/2).
0, 4, 1, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 20, 1, 3, 6, 10, 3, 2, 1, 1, 7, 2, 2, 1, 1, 1, 2, 7, 1, 23, 28, 2, 1, 2, 3, 138, 1, 4, 2, 3, 1, 1, 50, 1, 2, 1, 1, 6, 1, 24, 1, 2, 2, 1, 1, 1, 1, 1, 4, 6, 11, 1, 16, 3, 3, 1, 1, 1, 2, 8, 3, 47, 2, 1, 2, 2, 1, 38, 1, 5, 1, 147
Offset: 0
Examples
0.20787957635076190854695561983497877003387... i^i = 0.207879576350761908546... = 0 + 1/(4 + 1/(1 + 1/(4 + 1/(3 + ...)))). - _Harry J. Smith_, Apr 28 2009
Links
- Harry J. Smith, Table of n, a(n) for n = 0..19999
- G. Xiao, Contfrac
- H. S. Uhler, On the numerical value of i^i, Amer. Math. Monthly, 28 (1921), 114-116.
- Index entries for continued fractions for constants
Crossrefs
Cf. A049006 (decimal expansion).
Programs
-
Mathematica
ContinuedFraction[ E^(-Pi/2), 100]
-
PARI
{ allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(-Pi/2)); for (n=1, 20000, write("b049007.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 28 2009
Extensions
Offset changed by Andrew Howroyd, Aug 03 2024