cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049037 Number of cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.

Original entry on oeis.org

1, 6, 54, 996, 22734, 577692, 15680628, 445162392, 13055851998, 392475442092, 12029082873372, 374482032292008, 11808861461931492, 376406128925067528, 12108063535794336312, 392560994063887113744, 12814685828476778001726, 420836267423433182275404
Offset: 0

Views

Author

Alessandro Zinani (alzinani(AT)tin.it)

Keywords

Examples

			a(5) = 577692 because there are 577692 different walks that start and end at the origin after 2*5=10 steps, avoiding origin at intermediate steps.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 322-331.

Crossrefs

Invert A002896, A094059.
Column k=3 of A361397.

Programs

  • Maple
    read transforms; t1 := [ seq(A002896(i),i=1..25) ]; INVERTi(t1);
    # second Maple program:
    b:= proc(n) option remember; `if`(n<2, 5*n+1,
          (2*(2*n-1)*(10*n^2-10*n+3) *b(n-1)
           -36*(n-1)*(2*n-1)*(2*n-3) *b(n-2)) /n^3)
        end:
    g:= proc(n) g(n):= `if` (n<1, -1, -add(g(n-i) *b(i), i=1..n)) end:
    a:= n-> abs(g(n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 02 2012
  • Mathematica
    (* A002896 : *) b[n_] := b[n] = Binomial[2*n, n]*HypergeometricPFQ[{1/2, -n, -n}, {1, 1}, 4]; max = 32; a[0] = 1; se = Series[ Sum[ a[n] x^(2 n), {n, 1, max}] - 1 + 1/Sum[ b[n]*x^(2 n), {n, 0, max}], {x, 0, max}]; coes = CoefficientList[se, x]; sol = First[ Solve[ Thread[ coes == 0]]]; Table[ a[n], {n, 0, 16}] /. sol (* Jean-François Alcover, Dec 20 2011 *)
    b[n_] := b[n] = If[n < 2, 5*n + 1, (2*(2*n - 1)*(10*n^2 - 10*n + 3)*b[n-1] - 36*(n - 1)*(2*n - 1)*(2*n - 3)*b[n-2]) / n^3];
    g[n_] := g[n] = If[n < 1, -1, -Sum [g[n - i]*b[i], {i, 1, n}]];
    a[n_] := Abs[g[n]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 12 2018, after Alois P. Heinz *)

Formula

Define a_0, a_1, ... = [ 1, 6, 54, ... ] by 1+Sum b_i x^i = 1/(1-Sum a_i x^i) where b_0, b_1, ... = [ 1, 6, 90, ... ] = A002896.
Or, Sum[ a(n) x^(2n), n=1, 2, ...infinity ] = 1-1/Sum[ A002896(n)*x^(2n), n=0, 1, ...infinity ].
G.f.: 2-sqrt(1+12*z) /hypergeom([1/8, 3/8], [1], 64/81*z *(1+sqrt(1-36*z))^2 *(2+sqrt(1-36*z))^4 /(1+12*z)^4)/ hypergeom([1/8, 3/8], [1], 64/81*z *(1-sqrt(1-36*z))^2 *(2-sqrt(1-36*z))^4 /(1+12*z)^4). - Sergey Perepechko, Jan 30 2011
a(n) ~ c * 36^n / n^(3/2), where c = 0.1014559485279103938501072426734... . - Vaclav Kotesovec, Sep 13 2014
c = 384 * (3 + 2*sqrt(3)) * Pi^(9/2) / (Gamma(1/24)^4 * Gamma(11/24)^4). - Vaclav Kotesovec, Apr 23 2023