A049060 a(n) = (-1)^omega(n)*Sum_{d|n} d*(-1)^omega(d), where omega(n) = A001221(n) is number of distinct primes dividing n.
1, 1, 2, 5, 4, 2, 6, 13, 11, 4, 10, 10, 12, 6, 8, 29, 16, 11, 18, 20, 12, 10, 22, 26, 29, 12, 38, 30, 28, 8, 30, 61, 20, 16, 24, 55, 36, 18, 24, 52, 40, 12, 42, 50, 44, 22, 46, 58, 55, 29, 32, 60, 52, 38, 40, 78, 36, 28, 58, 40, 60, 30, 66, 125, 48, 20, 66, 80, 44, 24, 70
Offset: 1
Links
- R. J. Mathar, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
Maple
A049060 := proc(n) local it, ans, i, j; it := ifactors(n): ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*(-1+sum(ifactors(n)[2][i][1]^j, j=1..ifactors(n)[2][i][2])): od: RETURN(ans) end: [seq(A049060(i),i=1..n)];
-
Mathematica
a[p_?PrimeQ] := p-1; a[1] = 1; a[n_] := Times @@ ((#[[1]]^(#[[2]] + 1) - 2*#[[1]] + 1)/(#[[1]] - 1) & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, May 21 2012 *)
-
PARI
A049060(n)={ local(i,resul,rmax,p) ; if(n==1, return(1) ) ; i=factor(n) ; rmax=matsize(i)[1] ; resul=1 ; for(r=1,rmax, p=0 ; for(j=1,i[r,2], p += i[r,1]^j ; ) ; resul *= p-1 ; ) ; return(resul) ; } { for(n=1,40, print(n," ",A049060(n)) ) ; } \\ R. J. Mathar, Oct 12 2006
-
PARI
apply( A049060(n)=vecprod([(f[1]^(f[2]+1)-1)\(f[1]-1)-2 | f<-factor(n)~]), [1..99]) \\ M. F. Hasler, Sep 21 2022
-
Python
from math import prod from sympy import factorint def A049060(n): return prod((p**(e+1)-2*p+1)//(p-1) for p,e in factorint(n).items()) # Chai Wah Wu, Sep 13 2021
Formula
a(n) = Sum_{d|n} d*(-1)^A001221(d).
Multiplicative with a(p^e) = (p^(e+1)-2*p+1)/(p-1).
Simpler: a(p^e) = (p^(e+1)-1)/(p-1)-2. - M. F. Hasler, Sep 21 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 2/p^2 + 2/p^3) = 0.4478559359... . - Amiram Eldar, Oct 25 2022
Extensions
More terms from James Sellers, May 03 2000
Better description from Vladeta Jovovic, Apr 06 2002
Comments