A049098 Primes p such that p+1 is divisible by a square.
3, 7, 11, 17, 19, 23, 31, 43, 47, 53, 59, 67, 71, 79, 83, 89, 97, 103, 107, 127, 131, 139, 149, 151, 163, 167, 179, 191, 197, 199, 211, 223, 227, 233, 239, 241, 251, 263, 269, 271, 283, 293, 307, 311, 331, 337, 347, 349, 359, 367, 379, 383, 419, 431, 439, 443
Offset: 1
Examples
31 is a term because 32 is divisible by a square, 16. 101 is not a term because 102 = 2*3*17 is squarefree.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Leon Mirsky, The number of representations of an integer as the sum of a prime and a k-free integer, The American Mathematical Monthly, Vol. 56, No. 1 (1949), pp. 17-19.
Programs
-
Haskell
a049098 n = a049098_list !! (n-1) a049098_list = filter ((== 0) . a008966 . (+ 1)) a000040_list -- Reinhard Zumkeller, Oct 18 2011
-
Maple
with(numtheory): a := proc (n) if isprime(n) = true and issqrfree(n+1) = false then n else end if end proc: seq(a(n), n = 1 .. 500); # Emeric Deutsch, Jun 21 2009
-
Mathematica
Select[Prime[Range[200]],!SquareFreeQ[#+1]&] (* Harvey P. Dale, Mar 27 2011 *) Select[Prime[Range[200]], MoebiusMu[# + 1] == 0 &] (* Alonso del Arte, Oct 18 2011 *)
-
PARI
forprime(p=2,1e4,if(!issquarefree(p+1),print1(p", "))) \\ Charles R Greathouse IV, Oct 18 2011
Formula
A160696(a(n)) > 1. - Reinhard Zumkeller, May 24 2009
Comments