cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A122870 Primes congruent to 3 or 7 mod 20.

Original entry on oeis.org

3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187, 1223
Offset: 1

Views

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

The old name was "Primes p that divide Lucas((p+1)/2) = A000032((p+1)/2)".
Note that F(p+1) = F((p+1)/2)*Lucas((p+1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence (under the old definition above) lists primes p such that p divides F(p+1) but does not divides F((p+1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 3, 7 (mod 20). - Jianing Song, Jun 20 2025

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subseqeunce of A002145, A003631, A049098, A053027. Essentially the same as A106865.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 20 in [3, 7]]; // Vincenzo Librandi, Jan 06 2013
  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1+1)/2-1]+Fibonacci[(#1+1)/2+1])/#1]&]
    Select[Prime[Range[300]], MemberQ[{3, 7}, Mod[#, 20]]&] (* Vincenzo Librandi, Jan 06 2013 *)

Extensions

I merged A216816 into this entry at the suggestion of Jianing Song, Jun 20 2025. - N. J. A. Sloane, Jun 22 2025

A089199 Primes p such that p+1 is divisible by a cube.

Original entry on oeis.org

7, 23, 31, 47, 53, 71, 79, 103, 107, 127, 151, 167, 191, 199, 223, 239, 263, 269, 271, 311, 359, 367, 383, 431, 439, 463, 479, 487, 499, 503, 593, 599, 607, 631, 647, 701, 719, 727, 743, 751, 809, 823, 839, 863, 887, 911, 919, 967, 971, 983, 991
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

This sequence is infinite and its relative density in the sequence of primes is equal to 1 - Product_{p prime} (1-1/(p^2*(p-1))) = 1 - A065414 = 0.302498... (Mirsky, 1949). - Amiram Eldar, Apr 07 2021

Crossrefs

Includes A007522 and A141965.

Programs

  • Maple
    filter:= proc(p)
      isprime(p) and ormap(t -> t[2]>=3, ifactors(p+1)[2])
    end proc:
    select(filter, [seq(i,i=3..2000,2)]); # Robert Israel, Jan 11 2019
  • Mathematica
    f[n_]:=Max[Last/@FactorInteger[n]]; lst={};Do[p=Prime[n];If[f[p+1]>=3,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 03 2009 *)
  • PARI
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }
    powerfreep3(n,p,k) = { c=0; pc=0; forprime(x=2,n, pc++; if(ispowerfree(x+k,p)==0, c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }

A160696 Largest k such that k^2 divides prime(n)+1.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 4, 1, 1, 2, 4, 3, 2, 1, 2, 6, 1, 4, 2, 3, 7, 1, 2, 6, 1, 1, 8, 2, 1, 2, 5, 2, 1, 2, 2, 1, 6, 1, 8, 1, 3, 10, 2, 4, 2, 1, 3, 4, 11, 6, 1, 2, 3, 4, 1, 1, 2, 7, 2, 2, 1, 1, 2, 13, 2, 5, 1, 6, 4, 1, 2, 8, 1, 1, 1, 1, 2, 1, 12, 1, 2, 2, 15, 1, 1, 4, 6, 4, 2, 2, 10, 6, 1, 3, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2009

Keywords

Comments

A160697 and A160698 give record values and where they occur.

Crossrefs

Programs

  • PARI
    a(n) = core(prime(n)+1, 1)[2]; \\ Michel Marcus, Nov 06 2022

Formula

a(A049097(n)) = 1; a(A049098(n)) > 1;
a(n) = A000188(A008864(n)).

A089495 a(n) = mu(prime(n)+1), where mu is the Moebius function.

Original entry on oeis.org

-1, 0, 1, 0, 0, 1, 0, 0, 0, -1, 0, 1, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, 0, 0, 1, 0, 0, -1, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 1, -1, -1, 0, 1, 0, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, -1, 0, 0, -1, 0, 0
Offset: 1

Views

Author

T. D. Noe, Nov 04 2003

Keywords

Crossrefs

Cf. A049098 (primes p such that mu(p+1) = 0), A078329 (primes p such that mu(p+1) = -1), A089523 (primes p such that mu(p+1) = 1), A089451 (mu(p-1) for prime p), A089496 (mu(p+1)+mu(p-1) for prime p), A089497 (mu(p+1)-mu(p-1) for prime p).
A067461(n) - 1.

Programs

  • Mathematica
    Table[MoebiusMu[Prime[n]+1], {n, 150}]

A089523 Primes p such that mu(p+1) = 1; that is, p+1 is squarefree and has an even number of distinct prime factors, where mu is the Moebius function.

Original entry on oeis.org

5, 13, 37, 61, 73, 157, 193, 277, 313, 389, 397, 421, 457, 461, 509, 541, 569, 613, 661, 673, 733, 757, 769, 797, 857, 877, 929, 997, 1093, 1109, 1153, 1201, 1213, 1217, 1229, 1237, 1289, 1301, 1321, 1381, 1409, 1429, 1453, 1481, 1553, 1609, 1621, 1657
Offset: 1

Views

Author

T. D. Noe, Nov 06 2003

Keywords

Crossrefs

Cf. A089495 (mu(p+1) for prime p), A049098 (primes p with mu(p+1)=0), A078329 (primes p with mu(p+1)=-1).

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | MoebiusMu(p+1) eq 1]; // Vincenzo Librandi, Aug 17 2018
  • Maple
    select(n -> isprime(n) and numtheory:-mobius(n+1)=1, [seq(i,i=1..2000,4)]); # Robert Israel, Aug 16 2018
  • Mathematica
    Select[Prime[Range[300]], MoebiusMu[ #+1]==1&]
  • PARI
    isok(p) = isprime(p) && (moebius(p+1) == 1); \\ Michel Marcus, Aug 16 2018
    

A319050 Primes p such that neither p + 1 nor p + 2 is squarefree.

Original entry on oeis.org

7, 23, 43, 47, 79, 97, 151, 167, 223, 241, 331, 349, 359, 367, 439, 523, 547, 619, 691, 727, 773, 823, 839, 907, 1051, 1087, 1123, 1223, 1231, 1249, 1303, 1367, 1423, 1447, 1483, 1523, 1571, 1627, 1663, 1699, 1723, 1811, 1823, 1847, 1861, 1879, 1951, 1987, 2131, 2203, 2207
Offset: 1

Views

Author

Seiichi Manyama, Sep 08 2018

Keywords

Examples

			8 = 2^3 and 9 = 3^2. So 7 is a term.
24 = 2^3*3 and 25 = 5^2. So 23 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[400]],NoneTrue[#+{1,2},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    isok(p) = isprime(p) && !issquarefree(p+1) && !issquarefree(p+2); \\ Michel Marcus, Sep 09 2018

A319051 Primes p such that none of p + 1, p + 2 and p + 3 are squarefree.

Original entry on oeis.org

47, 97, 241, 349, 547, 773, 1249, 1447, 1663, 1847, 1861, 2347, 2887, 3049, 3547, 3607, 3623, 3697, 4111, 4373, 4597, 5237, 5273, 5749, 6173, 6857, 7549, 8467, 8647, 8719, 9161, 9349, 9547, 9749, 11149, 11321, 11447, 12049, 12473, 12689, 12823, 12941, 13147, 13291
Offset: 1

Views

Author

Seiichi Manyama, Sep 08 2018

Keywords

Examples

			48 = 2^4*3, 49 = 7^2 and 50 = 2*5^2. So 47 is a term.
98 = 2*7^2, 99 = 3^2*11 and 100 = 2^2*5^2. So 97 is a term.
		

Crossrefs

Programs

  • PARI
    forprime(p=2, 1e5, if(!issquarefree(p+1) && !issquarefree(p+2) && !issquarefree(p+3), print1(p", ")))
Showing 1-7 of 7 results.