cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049226 Composite numbers n such that the sum of divisors of n, sigma(n), divided by the number of divisors, d(n) and sigma(n) minus n are both rational squares.

Original entry on oeis.org

119, 527, 1196, 3591, 5831, 6887, 12319, 15407, 18575, 33271, 47959, 51119, 56853, 63119, 65151, 116399, 176911, 328151, 373319, 437999, 438311, 520319, 568519, 724687, 734111, 851927, 957551, 1059191, 1140071, 1437599, 1760831, 1813511, 2320919, 3354479, 3383420
Offset: 1

Views

Author

Keywords

Comments

The prime numbers with this property are primes of the form 2*k^2 - 1 (A066436). - Amiram Eldar, Aug 15 2019
The first terms for which the ratio sigma(n)/d(n) is not an integer are 267910912, 1398459816, and 1703794876. - Giovanni Resta, Aug 30 2019

Examples

			a(27) = 957551 is a term since the sum of its 16 divisors is sigma(957551) = 1166400 and both 1166400/16 = 72900 = 270^2 and 1166400 - 957551 = 208849 = 457^2 are perfect squares.
		

Crossrefs

Programs

  • Magma
    [m:m in [1..3400000]|not IsPrime(m) and IsSquare(SumOfDivisors(m)/#Divisors(m)) and IsSquare(SumOfDivisors(m)-m)]; // Marius A. Burtea, Aug 15 2019
  • Mathematica
    Select[Range[10^5], CompositeQ[#] && And @@ IntegerQ /@ Sqrt[{(s = DivisorSigma[1, #]) * DivisorSigma[0, #], s - #}] &] (* Amiram Eldar, Aug 15 2019 *)
    cnQ[n_]:=With[{sg=DivisorSigma[1,n]},CompositeQ[n]&&AllTrue[{Sqrt[sg/DivisorSigma[0,n]],Sqrt[sg-n]},IntegerQ]]; Select[Range[ 339*10^4],cnQ] (* Harvey P. Dale, Mar 31 2025 *)
  • PARI
    is(n) = my(f = factor(n), s = sigma(f), nd = numdiv(f)); issquare(s/nd) && issquare(s - n) && !isprime(n) \\ David A. Corneth, Aug 15 2019
    

Extensions

Name and offset corrected by Amiram Eldar, Aug 15 2019

A049227 Sigma(n) / d(n) is a perfect square associated with A049226.

Original entry on oeis.org

36, 144, 196, 400, 900, 1764, 3136, 2304, 3844, 4900, 12100, 7056, 13689, 9216, 6400, 15876, 25600, 44100, 93636, 57600, 32400, 69696, 81796, 94864, 57600, 213444, 72900, 152100, 152100, 360000, 230400, 260100, 298116, 435600, 298116, 254016, 291600, 656100
Offset: 1

Views

Author

Keywords

Examples

			a(27) = 72900 = 270^2 is a term since sigma(A049226(27))/d(A049226(27)) = 72900.
		

Crossrefs

Formula

a(n) = A000203(A049226(n)) / A000005(A049226(n)). - Amiram Eldar, Aug 15 2019

Extensions

Offset corrected and more terms added by Amiram Eldar, Aug 15 2019
Showing 1-2 of 2 results.