cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A119711 Primes p such that p+1, p+2 and p+3 have equal number of divisors.

Original entry on oeis.org

229, 241, 373, 1831, 2053, 2503, 3109, 5861, 6053, 6151, 6871, 8293, 8821, 9161, 9829, 12049, 13591, 13781, 14293, 14887, 16087, 17737, 19141, 19333, 20389, 21493, 23333, 23509, 24151, 25771, 27109, 28807, 29269, 31337, 33413, 33941, 35509
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Examples

			229 is OK since 230, 231 and 232 all have 8 divisors: {1,2,5,10,23,46,115,230}, {1,3,7,11,21,33,77,231} and {1,2,4,8,29,58,116,232}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@5000,DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]&]

A119705 Primes p such that the number of divisors of p+1 equals number of divisors of p+2.

Original entry on oeis.org

13, 37, 43, 97, 103, 157, 229, 241, 331, 373, 433, 541, 547, 877, 907, 1021, 1129, 1201, 1373, 1381, 1433, 1489, 1543, 1597, 1613, 1621, 1741, 1831, 1951, 1987, 2017, 2053, 2161, 2377, 2503, 2539, 2557, 2633, 2677, 2713, 2857, 2953, 3061, 3067, 3109, 3169
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Comments

Primes p such that A008329(p) = A049234(p).

Examples

			13 is a term because 14 and 15 each have 4 divisors: {1, 2, 7, 14} and {1, 3, 5, 15}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3200], PrimeQ[#] && DivisorSigma[0, # + 1] == DivisorSigma[0, # + 2] &] (* Amiram Eldar, Jan 26 2020 *)
  • PARI
    isok(n) = isprime(n) && (numdiv(n+1) == numdiv(n+2)); \\ Michel Marcus, Oct 10 2013

A119728 Primes p such that p+1, p+2, p+3 and p+4 have equal number of divisors.

Original entry on oeis.org

241, 13781, 19141, 21493, 50581, 61141, 76261, 77431, 94261, 95383, 95413, 98101, 104743, 104869, 134581, 141653, 142453, 152629, 153991, 158341, 160933, 165541, 169111, 199831, 201511, 203431, 206551, 229351, 233941, 235111, 253013, 273367
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Examples

			241 is a term since 242, 243, 244 and 245 all have 6 divisors:
{1,2,11,22,121,242},{1,3,9,27,81,243},{1,2,4,61,122,244} and {1,5,7,35,49,245}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@50000,DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]==DivisorSigma[0,#+4]&]

A119730 Primes p such that p+1, p+2, p+3, p+4 and p+5 have equal number of divisors.

Original entry on oeis.org

13781, 19141, 21493, 50581, 142453, 152629, 253013, 298693, 307253, 346501, 507781, 543061, 845381, 1079093, 1273781, 1354501, 1386901, 1492069, 1546261, 1661333, 1665061, 1841141, 2192933, 2208517, 2436341, 2453141, 2545013
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Examples

			13781 is a term since 13782, 13783, 13784, 13785 and 13786 all have 8 divisors:
{1,2,3,6,2297,4594,6891,13782}, {1,7,11,77,179,1253,1969,13783},
{1,2,4,8,1723,3446,6892,13784}, {1,3,5,15,919,2757,4595,13785} and
{1,2,61,113,122,226,6893,13786}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[1000000],DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]==DivisorSigma[0,#+4]==DivisorSigma[0,#+5]&]
    endQ[n_]:= Length[Union[DivisorSigma[0, (n + Range[5])]]]==1; Select[Prime[ Range[ 200000]],endQ] (* Harvey P. Dale, Jan 16 2019 *)

A119740 Primes p such that p+1, p+2, p+3, p+4, p+5 and p+6 have equal number of divisors.

Original entry on oeis.org

298693, 346501, 1841141, 2192933, 2861461, 3106981, 3375781, 3435589, 3437813, 3865429, 4597013, 6191461, 7016213, 7074901, 7637941, 7918373, 9196309, 10216901, 12798901, 13747429, 14100661, 14171653, 14770981, 14779189
Offset: 1

Views

Author

Zak Seidov, Jul 29 2006

Keywords

Examples

			298693 is a term since 298694, 298695, 298696, 298697, 298698 and 298699 all have 8 divisors:
{1,2,11,22,13577,27154,149347,298694}, {1,3,5,15,19913,59739,99565,298695},
{1,2,4,8,37337,74674,149348,298696}, {1,7,71,497,601,4207,42671,298697},
{1,2,3,6,49783,99566,149349,298698}, {1,19,79,199,1501,3781,15721,298699}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[1000000],DivisorSigma[0,#+1]==DivisorSigma[0,#+2]==DivisorSigma[0,#+3]==DivisorSigma[0,#+4]==DivisorSigma[0,#+5]==DivisorSigma[0,#+6]&]
Showing 1-5 of 5 results.