cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049291 Number of subgroups of index n in free group of rank 4.

Original entry on oeis.org

1, 15, 625, 54335, 8563601, 2228419359, 893451975473, 523337983164799, 429463651385469649, 477364501208149290975, 699086688951391180496497, 1318072723102023442664430143, 3137514636520304660660007679505
Offset: 1

Views

Author

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

Crossrefs

Programs

  • Mathematica
    ClearAll[a]; a[n_] := a[n] = n*n!^3 - Sum [k!^3*a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 13}]  (* Jean-François Alcover, Oct 08 2012, from first formula *)
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,n,k!^3*x^k)+x*O(x^n)),n)} \\ Paul D. Hanna, Apr 13 2009

Formula

a(n) = n*n!^3 - Sum_{k=1..n-1} k!^3*a(n-k).
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log( Sum_{n>=1} (n-1)!^3*x^n ). [Paul D. Hanna, Apr 13 2009]

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001