cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049290 Array T(n,k) = number of subgroups of index k in free group of rank n, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 13, 1, 1, 15, 97, 71, 1, 1, 31, 625, 2143, 461, 1, 1, 63, 3841, 54335, 68641, 3447, 1, 1, 127, 23233, 1321471, 8563601, 3011263, 29093, 1, 1, 255, 139777, 31817471, 1035045121, 2228419359, 173773153, 273343, 1, 1, 511, 839425
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Examples

			Array T(n,k) (n >= 1, k >= 1) begins:
1,  1,   1,     1,       1, ...
1,  3,  13,    71,     461, ...
1,  7,  97,  2143,   68641, ...
1, 15, 625, 54335, 8563601, ...
		

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

Crossrefs

Rows give A003319, A027837, A049291.
Columns give A000225, A049294, A049295.
Main diagonal is A057014.

Programs

  • Maple
    T:= proc(n,k) option remember; k* k!^(n-1) -add(j!^(n-1) *T(n, k-j), j=1..k-1) end: seq(seq(T(d+1-k, k), k=1..d), d=1..10); # Alois P. Heinz, Oct 29 2009
  • Mathematica
    nmax = 10; t[n_, k_] := t[n, k] = k*k!^(n-1) - Sum[j!^(n-1)*t[n, k-j], {j, 1, k-1}]; Flatten[ Table[ t[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 09 2011, after Maple *)

Extensions

More terms from Alois P. Heinz, Oct 29 2009

A049294 Number of subgroups of index 3 in free group of rank n+1.

Original entry on oeis.org

1, 13, 97, 625, 3841, 23233, 139777, 839425, 5038081, 30231553, 181395457, 1088385025, 6530334721, 39182057473, 235092443137, 1410554855425, 8463329525761, 50779977940993, 304679869218817, 1828079218458625
Offset: 0

Views

Author

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-20,12},{1,13,97},20] (* Harvey P. Dale, Sep 24 2017 *)

Formula

a(n) = 3*6^n-3*2^n+1.
G.f.: (1+4*x)/((1-x)*(1-2*x)*(1-6*x)). [Colin Barker, May 08 2012]

Extensions

More terms from Karen Richardson (s1149414(AT)cedarville.edu)
Showing 1-2 of 2 results.