cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A049290 Array T(n,k) = number of subgroups of index k in free group of rank n, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 13, 1, 1, 15, 97, 71, 1, 1, 31, 625, 2143, 461, 1, 1, 63, 3841, 54335, 68641, 3447, 1, 1, 127, 23233, 1321471, 8563601, 3011263, 29093, 1, 1, 255, 139777, 31817471, 1035045121, 2228419359, 173773153, 273343, 1, 1, 511, 839425
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Examples

			Array T(n,k) (n >= 1, k >= 1) begins:
1,  1,   1,     1,       1, ...
1,  3,  13,    71,     461, ...
1,  7,  97,  2143,   68641, ...
1, 15, 625, 54335, 8563601, ...
		

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

Crossrefs

Rows give A003319, A027837, A049291.
Columns give A000225, A049294, A049295.
Main diagonal is A057014.

Programs

  • Maple
    T:= proc(n,k) option remember; k* k!^(n-1) -add(j!^(n-1) *T(n, k-j), j=1..k-1) end: seq(seq(T(d+1-k, k), k=1..d), d=1..10); # Alois P. Heinz, Oct 29 2009
  • Mathematica
    nmax = 10; t[n_, k_] := t[n, k] = k*k!^(n-1) - Sum[j!^(n-1)*t[n, k-j], {j, 1, k-1}]; Flatten[ Table[ t[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 09 2011, after Maple *)

Extensions

More terms from Alois P. Heinz, Oct 29 2009

A049295 Number of subgroups of index 4 in free group of rank n+1.

Original entry on oeis.org

1, 71, 2143, 54335, 1321471, 31817471, 764217343, 18344733695, 440294408191, 10567189327871, 253613279903743, 6086723113107455, 146081381003558911, 3505953301484470271, 84142880178680889343, 2019429129941297135615, 48466299152487396933631
Offset: 0

Views

Author

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23, N_{4,n}.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{37,-368,1436,-2256,1152},{1,71,2143,54335,1321471},20] (* Harvey P. Dale, Apr 14 2016 *)

Formula

a(n) = 4*24^n-4*6^n-2*4^n+4*2^n-1.
G.f.: (264*x^3+116*x^2-34*x-1) / ((x-1)*(2*x-1)*(4*x-1)*(6*x-1)*(24*x-1)). [Colin Barker, Feb 17 2013]

Extensions

More terms from Carrie Westbrook (s1213407(AT)cedarville.edu)
Terms corrected by Colin Barker, May 08 2012
a(16) from Colin Barker, Feb 17 2013

A093052 Exponent of 2 in 6^n - 2^n.

Original entry on oeis.org

0, 2, 5, 4, 8, 6, 9, 8, 13, 10, 13, 12, 16, 14, 17, 16, 22, 18, 21, 20, 24, 22, 25, 24, 29, 26, 29, 28, 32, 30, 33, 32, 39, 34, 37, 36, 40, 38, 41, 40, 45, 42, 45, 44, 48, 46, 49, 48, 54, 50, 53, 52, 56, 54, 57, 56, 61, 58, 61, 60, 64, 62, 65, 64, 72, 66, 69, 68, 72
Offset: 0

Views

Author

Ralf Stephan, Mar 16 2004

Keywords

Crossrefs

a(n-1) is the exponent of 2 in A009168(n), A012394(n), A088991(n), A009083(n), A012036(n), A012092(n), A012395(n), A012460(n), A012465(n), A012466(n), A012467(n), (A049294(n)-1)/3.

Programs

  • Mathematica
    Join[{0},Table[IntegerExponent[6^n-2^n,2],{n,70}]] (* Harvey P. Dale, Mar 08 2012 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+2*floor((n+2)/4)+1,n+1))
    
  • Python
    def A093052(n): return n+(~(m:=3**n-1)& m-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022

Formula

Recurrence: a(2n) = a(n) + [(n+1)/2] + 1, a(2n+1) = 2n+2.
a(n) = n + A007814(A024023(n)) = n + A090740(n). - Reinhard Zumkeller, Mar 27 2004

A049291 Number of subgroups of index n in free group of rank 4.

Original entry on oeis.org

1, 15, 625, 54335, 8563601, 2228419359, 893451975473, 523337983164799, 429463651385469649, 477364501208149290975, 699086688951391180496497, 1318072723102023442664430143, 3137514636520304660660007679505
Offset: 1

Views

Author

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).

Crossrefs

Programs

  • Mathematica
    ClearAll[a]; a[n_] := a[n] = n*n!^3 - Sum [k!^3*a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 13}]  (* Jean-François Alcover, Oct 08 2012, from first formula *)
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,n,k!^3*x^k)+x*O(x^n)),n)} \\ Paul D. Hanna, Apr 13 2009

Formula

a(n) = n*n!^3 - Sum_{k=1..n-1} k!^3*a(n-k).
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log( Sum_{n>=1} (n-1)!^3*x^n ). [Paul D. Hanna, Apr 13 2009]

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001
Showing 1-4 of 4 results.