A049294 Number of subgroups of index 3 in free group of rank n+1.
1, 13, 97, 625, 3841, 23233, 139777, 839425, 5038081, 30231553, 181395457, 1088385025, 6530334721, 39182057473, 235092443137, 1410554855425, 8463329525761, 50779977940993, 304679869218817, 1828079218458625
Offset: 0
References
- P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 23.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.13(b).
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- M. Hall, Subgroups of finite index in free groups, Canad. J. Math., 1 (1949), 187-190.
- V. A. Liskovets and A. Mednykh, Enumeration of subgroups in the fundamental groups of orientable circle bundles over surfaces, Commun. in Algebra, 28, No. 4 (2000), 1717-1738.
- Index entries for linear recurrences with constant coefficients, signature (9,-20,12).
Programs
-
Mathematica
LinearRecurrence[{9,-20,12},{1,13,97},20] (* Harvey P. Dale, Sep 24 2017 *)
Formula
a(n) = 3*6^n-3*2^n+1.
G.f.: (1+4*x)/((1-x)*(1-2*x)*(1-6*x)). [Colin Barker, May 08 2012]
Extensions
More terms from Karen Richardson (s1149414(AT)cedarville.edu)