A260702 Numbers n such that 3*n and n^2 have the same digit sum.
0, 3, 6, 9, 12, 15, 18, 21, 30, 33, 39, 45, 48, 51, 60, 66, 90, 96, 99, 102, 105, 111, 120, 123, 129, 132, 150, 153, 156, 159, 162, 165, 180, 189, 195, 198, 201, 210, 225, 231, 246, 252, 255, 261, 285, 300, 330, 333, 348, 351, 390, 399, 429, 450, 453, 459, 462
Offset: 1
Examples
159 is in the sequence because 159^2 = 25281 and 3*159 = 477 have the same digit sum: 18.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [0..500] | &+Intseq(3*n) eq &+Intseq(n^2)];
-
Maple
select(n -> convert(convert(3*n,base,10),`+`)=convert(convert(n^2,base,10),`+`), [seq(i,i=0..1000,3)]); # Robert Israel, Apr 05 2020
-
Mathematica
Select[Range[0, 500], Total[IntegerDigits[3 #]] == Total[IntegerDigits[#^2]] &]
-
PARI
isok(n) = sumdigits(3*n) == sumdigits(n^2); \\ Michel Marcus, Nov 17 2015
-
Sage
[n for n in (0..500) if sum((3*n).digits())==sum((n^2).digits())] # Bruno Berselli, Nov 17 2015
Comments