A049402 Row sums of triangle A049374.
1, 1, 7, 61, 649, 8245, 122215, 2069425, 39328465, 827226505, 19047582055, 475956135205, 12815133759385, 369605936607805, 11361372997850695, 370609338222772825, 12780705695068446625, 464412124831585889425, 17729002673226394402375, 709180766131239680070925
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..415
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( binomial(n-1, j-1)*(j+4)!/5!*a(n-j), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Aug 01 2017
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, j - 1]*(j + 4)!/5!*a[n - j], {j, 1, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
Formula
E.g.f. exp(p(x)) with p(x) := (1-(1-x)^5)/(5*(1-x)^5) (E.g.f. first column of A049374).
From Seiichi Manyama, Jan 18 2025: (Start)
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A005011(k).
a(n) = (1/exp(1/5)) * (-1)^n * n! * Sum_{k>=0} binomial(-5*k,n)/(5^k * k!). (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Aug 01 2017