A291709
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j>=1} (-1)^(j-1)*binomial(-k,j-1)*x^j/j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 13, 24, 1, 1, 1, 5, 22, 73, 120, 1, 1, 1, 6, 33, 154, 501, 720, 1, 1, 1, 7, 46, 273, 1306, 4051, 5040, 1, 1, 1, 8, 61, 436, 2721, 12976, 37633, 40320, 1, 1, 1, 9, 78, 649, 4956, 31701, 147484, 394353, 362880, 1
Offset: 0
Square array B(j,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
0, 1, 3, 6, 10, ...
0, 1, 4, 10, 20, ...
0, 1, 5, 15, 35, ...
0, 1, 6, 21, 56, ...
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
1, 6, 13, 22, 33, ...
1, 24, 73, 154, 273, ...
1, 120, 501, 1306, 2721, ...
Columns k=0..10 give
A000012,
A000142,
A000262,
A049376,
A049377,
A049378,
A049402,
A132164,
A293986,
A293987,
A293988.
-
B[j_, k_] := (-1)^(j-1)*Binomial[-k, j-1];
A[0, ] = 1; A[n, k_] := (n-1)!*Sum[B[j, k]*A[n-j, k]/(n-j)!, {j, 1, n}];
Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
A157386
A partition product of Stirling_1 type [parameter k = -6] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 6, 1, 18, 42, 1, 144, 168, 336, 1, 600, 2940, 1680, 3024, 1, 4950, 33600, 35280, 18144, 30240, 1, 26586, 336630, 717360, 444528, 211680, 332640, 1, 234528, 4870992, 11313120, 10329984, 5927040, 2661120, 3991680
Offset: 1
A049374
A triangle of numbers related to triangle A030527.
Original entry on oeis.org
1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
Offset: 1
Triangle begins
1;
6, 1;
42, 18, 1;
336, 276, 36, 1;
3024, 4200, 960, 60, 1;
30240, 66024, 23400, 2460, 90, 1;
332640, 1086624, 557424, 87360, 5250, 126, 1;
E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3.
a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
-
Flat(List([1..10],n->Factorial(n)*List([1..n],k->Sum([1..k],j->(-1)^(k-j)*Binomial(k,j)*Binomial(n+5*j-1,5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
-
a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ;
Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]]
(* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(#+5)!/120&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
a(n,k)=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1),j,1,k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
a(n,k)=(n!*sum(j=1,k,(-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1)))/(5^k*k!);
for(n=1,12,for(k=1,n,print1(a(n,k),", "));print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
A144356
Partition number array, called M31(6), related to A049374(n,m)= |S1(6;n,m)| (generalized Stirling triangle).
Original entry on oeis.org
1, 6, 1, 42, 18, 1, 336, 168, 108, 36, 1, 3024, 1680, 2520, 420, 540, 60, 1, 30240, 18144, 30240, 17640, 5040, 15120, 3240, 840, 1620, 90, 1, 332640, 211680, 381024, 493920, 63504, 211680, 123480, 158760, 11760, 52920, 22680, 1470, 3780, 126, 1, 3991680, 2661120
Offset: 1
[1];[6,1];[42,18,1];[336,168,108,36,1];[3024,1680,2520,420,540,60,1];...
a(4,3)= 108 = 3*|S1(6;2,1)|^2. The relevant partition of 4 is (2^2).
A134140
Alternating row sums of triangle A049374 (S1p(6)).
Original entry on oeis.org
1, 5, 25, 95, -275, -14755, -278795, -4134145, -49014215, -304537195, 7111142545, 397535340575, 12667519999525, 327297915798125, 7052174242084525, 109425656597938175, -88497453300450575, -107470322009554282075, -6297063330456696598775
Offset: 1
Showing 1-5 of 5 results.
Comments