cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049426 Row sums of triangle A049410.

Original entry on oeis.org

1, 1, 4, 16, 76, 436, 2776, 19384, 148576, 1226656, 10824256, 101695936, 1010783104, 10577428096, 116166090496, 1334409569536, 15985101216256, 199216504113664, 2577292524107776, 34542575915216896, 478781761481291776
Offset: 0

Views

Author

Keywords

Crossrefs

Column of A293991.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[((1+x)^4-1)/4],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 28 2017 *)

Formula

E.g.f.: exp((-1+(1+x)^4)/4).
a(n) = n!*Sum_(k=1..n, Sum_(j=0..k, binomial(4*j,n)*(-1)^(k-j)/(4^k*(k-j)!*j!))). - Vladimir Kruchinin, Feb 07 2011
D-finite with recurrence a(n) -a(n-1) +3*(-n+1)*a(n-2) -3*(n-1)*(n-2)*a(n-3) -(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 23 2023
a(n) = Sum_{k=0..n} Stirling1(n,k) * A004213(k). - Seiichi Manyama, Jan 31 2024
a(n) = (1/exp(1/4)) * n! * Sum_{k>=0} binomial(4*k,n)/(4^k * k!). - Seiichi Manyama, Jan 18 2025