cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049428 Row sums of triangle A049411.

Original entry on oeis.org

1, 1, 6, 36, 246, 2046, 19716, 209616, 2441916, 31050396, 425883816, 6244077456, 97391939976, 1609040166696, 28029696862896, 512903202039936, 9829166157390096, 196739739722616336, 4102788435212513376, 88945209649582514496, 2000700796384204930656
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A293991.
Cf. A005012.

Programs

  • Mathematica
    nmax = 20;
    a[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, nmax}]];
    a[0] = 1; a[n_] := Sum[a[n, m], {m, 1, n}];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 27 2018 *)

Formula

E.g.f.: exp((-1+(1+x)^6)/6).
a(n) = n! * Sum_{k=1..n} Sum_{j=0..k} binomial(6*j,n) *(-1)^(k-j)/ (6^k*(k-j)!*j!). - Vladimir Kruchinin, Feb 07 2011
D-finite with recurrence a(n) -a(n-1) +5*(-n+1)*a(n-2) -10*(n-1)*(n-2)*a(n-3) -10*(n-1)*(n-2)*(n-3)*a(n-4) -5*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-6)=0. - R. J. Mathar, Jun 23 2023
a(n) = Sum_{k=0..n} Stirling1(n,k) * A005012(k). - Seiichi Manyama, Jan 31 2024
a(n) = (1/exp(1/6)) * n! * Sum_{k>=0} binomial(6*k,n)/(6^k * k!). - Seiichi Manyama, Jan 18 2025

Extensions

Offset adjusted by R. J. Mathar, Aug 29 2009