A049431 Duplicate of A049428.
1, 1, 6, 36, 246, 2046, 19716, 209616, 2441916, 31050396, 425883816, 6244077456
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Square array A(n,k) begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, ... 1, 4, 9, 16, 25, ... 1, 10, 33, 76, 145, ... 1, 26, 141, 436, 1025, ...
A[0, ] = 1; A[n, k_] := (n-1)!*Sum[Binomial[k, j-1]*A[n-j, k]/(n-j)!, {j, 1, Min[k+1, n]}]; Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
a:= proc(n) option remember; `if`(n=0, 1, add( binomial(n-1, j-1)*(j+5)!/6!*a(n-j), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Aug 01 2017
a[n_]:=a[n]=If[n==0, 1, Sum[Binomial[n - 1, j - 1] (j + 5)!/6! a[n - j], {j, n}]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Aug 02 2017, after Maple code *)
[1]; [5,1]; [20,15,1]; [60,80,75,30,1]; [120,300,1000,200,375,50,1]; ... a(4,3) = 75 = 3*S1(-5;2,1)^2. The relevant partition of 4 is (2^2).
Row polynomial E(3,x) = 20*x + 15*x^2 + x^3. Triangle starts: { 1} { 5, 1} { 20, 15, 1} { 60, 155, 30, 1} {120, 1300, 575, 50, 1}
rows = 10; a[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
# uses[bell_matrix from A264428] # Adds 1,0,0,0,... as column 0 at the left side of the triangle. bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
Comments