cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A049431 Duplicate of A049428.

Original entry on oeis.org

1, 1, 6, 36, 246, 2046, 19716, 209616, 2441916, 31050396, 425883816, 6244077456
Offset: 0

Views

Author

Keywords

A157395 A partition product of Stirling_1 type [parameter k = 5] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 5, 1, 15, 20, 1, 105, 80, 60, 1, 425, 1200, 300, 120, 1, 3075, 10400, 5400, 720, 120, 1, 15855, 102200, 75600, 15120, 840, 0, 1, 123515, 1149120, 907200, 241920, 20160, 0, 0, 1, 757755, 12783680, 13426560, 3719520, 362880
Offset: 1

Views

Author

Peter Luschny, Mar 07 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = 5,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144879.
Same partition product with length statistic is A049411.
Diagonal a(A000217(n)) = falling_factorial(5,n-1), row in A008279
Row sum is A049428.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n+7).

A293991 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j=1..k+1} binomial(k,j-1)*x^j/j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 9, 10, 1, 1, 1, 5, 16, 33, 26, 1, 1, 1, 6, 25, 76, 141, 76, 1, 1, 1, 7, 36, 145, 436, 651, 232, 1, 1, 1, 8, 49, 246, 1025, 2776, 3333, 764, 1, 1, 1, 9, 64, 385, 2046, 8245, 19384, 18369, 2620, 1, 1, 1, 10, 81
Offset: 0

Views

Author

Seiichi Manyama, Oct 21 2017

Keywords

Examples

			Square array A(n,k) begins:
   1,  1,   1,   1,    1, ...
   1,  1,   1,   1,    1, ...
   1,  2,   3,   4,    5, ...
   1,  4,   9,  16,   25, ...
   1, 10,  33,  76,  145, ...
   1, 26, 141, 436, 1025, ...
		

Crossrefs

Columns k=0..5 give A000012, A000085, A049425, A049426, A049427, A049428.
Rows n=0-1 give A000012.
Main diagonal gives A294003.
Cf. A291709.

Programs

  • Mathematica
    A[0, ] = 1; A[n, k_] := (n-1)!*Sum[Binomial[k, j-1]*A[n-j, k]/(n-j)!, {j, 1, Min[k+1, n]}];
    Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)

Formula

E.g.f. of column k: exp(((1+x)^(k+1) - 1)/(k+1)).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k+1,n)} binomial(k,j-1)*A(n-j,k)/(n-j)! for n > 0.

A132164 Row sums of triangle A134141 (S1p(7)).

Original entry on oeis.org

1, 1, 8, 78, 918, 12846, 209616, 3909228, 81859548, 1897344828, 48135826656, 1325008302696, 39292978029768, 1247949491330088, 42236558731574208, 1516738194700667856, 57573649342673292816, 2302425590703685075728, 96720470167595138898048
Offset: 0

Views

Author

Wolfdieter Lang, Oct 12 2007

Keywords

Crossrefs

Cf. A132165 (alternating row sum of A134141), A049428.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*(j+5)!/6!*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 01 2017
  • Mathematica
    a[n_]:=a[n]=If[n==0, 1, Sum[Binomial[n - 1, j - 1] (j + 5)!/6! a[n - j], {j, n}]]; Table[a[n], {n, 0, 25}] (* Indranil Ghosh, Aug 02 2017, after Maple code *)

Formula

a(n)= sum(A134141(n,m),m=1..n),n>=1.
E.g.f.: exp((1-(1-x)^6)/(6*(1-x)^6)). Cf. e.g.f. first column of A134141.
From Seiichi Manyama, Jan 18 2025: (Start)
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A005012(k).
a(n) = (1/exp(1/6)) * (-1)^n * n! * Sum_{k>=0} binomial(-6*k,n)/(6^k * k!). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2017

A144879 Partition number array, called M31(-5), related to A049411(n,m) = S1(-5;n,m) (generalized Stirling triangle).

Original entry on oeis.org

1, 5, 1, 20, 15, 1, 60, 80, 75, 30, 1, 120, 300, 1000, 200, 375, 50, 1, 120, 720, 4500, 4000, 900, 6000, 1875, 400, 1125, 75, 1, 0, 840, 12600, 42000, 2520, 31500, 28000, 52500, 2100, 21000, 13125, 700, 2625, 105, 1, 0, 0, 16800, 134400, 126000, 3360, 100800, 336000
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008, Oct 28 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31(-5;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
First member (K=5) in the family M31(-K) of partition number arrays.
If M31(-5;n,k) is summed over those k with fixed number of parts m one obtains the unsigned triangle S1(-5) := A049411.

Examples

			[1]; [5,1]; [20,15,1]; [60,80,75,30,1]; [120,300,1000,200,375,50,1]; ...
a(4,3) = 75 = 3*S1(-5;2,1)^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A049428 (row sums).
Cf. A144878 (M31(-4) array).

Formula

a(n,k)=(n!/Product_{j=1..n} (e(n,k,j)!*j!^e(n,k,j))) * Product_{j=1..n} S1(-5;j,1)^e(n,k,j) = M3(n,k) * Product_{j=1..n} S1(-5;j,1)^e(n,k,j), with S1(-5;n,1) = A008279(5,n-1)= [1,5,20,60,120,120,0,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.

A049411 Triangle read by rows, the Bell transform of n!*binomial(5,n) (without column 0).

Original entry on oeis.org

1, 5, 1, 20, 15, 1, 60, 155, 30, 1, 120, 1300, 575, 50, 1, 120, 9220, 8775, 1525, 75, 1, 0, 55440, 114520, 36225, 3325, 105, 1, 0, 277200, 1315160, 730345, 112700, 6370, 140, 1, 0, 1108800, 13428800, 13000680, 3209745, 291060, 11130, 180, 1, 0, 3326400
Offset: 1

Views

Author

Keywords

Comments

Previous name was: A triangle of numbers related to triangle A049327.
a(n,1) = A008279(5,n-1). a(n,m) =: S1(-5; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A013988(n,m).
The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			Row polynomial E(3,x) = 20*x + 15*x^2 + x^3.
Triangle starts:
{  1}
{  5,    1}
{ 20,   15,   1}
{ 60,  155,  30,  1}
{120, 1300, 575, 50, 1}
		

Crossrefs

Cf. A049327.
Row sums give A049428.

Programs

  • Mathematica
    rows = 10;
    a[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];
    Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds 1,0,0,0,... as column 0 at the left side of the triangle.
    bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016

Formula

a(n, m) = n!*A049327(n, m)/(m!*6^(n-m));
a(n, m) = (6*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: (((-1+(1+x)^6)/6)^m)/m!.

Extensions

New name from Peter Luschny, Jan 16 2016
Showing 1-6 of 6 results.