A049439 Numbers k such that the number of odd divisors of k is an odd divisor of k.
1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 128, 144, 225, 256, 288, 441, 450, 512, 576, 625, 882, 900, 1024, 1089, 1152, 1250, 1521, 1764, 1800, 2025, 2048, 2178, 2304, 2500, 2601, 3042, 3249, 3528, 3600, 4050, 4096, 4356, 4608, 4761, 5000, 5202, 5625, 6084
Offset: 1
Examples
There are 3 odd divisors of 18, namely 1,3 and 9 and 3 itself is an odd divisor of 18.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Simon Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2 (1999), Article 99.1.2.
- Simon Colton, HR - Automatic Theory Formation in Pure Mathematics.
Crossrefs
Programs
-
Haskell
a049439 n = a049439_list !! (n-1) a049439_list = filter (\x -> ((length $ oddDivs x) `elem` oddDivs x)) [1..] where oddDivs n = [d | d <- [1,3..n], mod n d == 0] -- Reinhard Zumkeller, Aug 17 2011
-
Mathematica
ok[n_] := (d = Length @ Select[Divisors[n], OddQ] ; IntegerQ[n/d] && OddQ[d]); Select[Range[6100], ok] (* Jean-François Alcover, Apr 22 2011 *) odQ[n_]:=Module[{ods=Select[Divisors[n],OddQ]},MemberQ[ods,Length[ ods]]]; Select[Range[7000],odQ] (* Harvey P. Dale, Dec 18 2011 *) Select[Range[6000], OddQ[(d = DivisorSigma[0, #/2^IntegerExponent[#, 2]])] && Divisible[#, d] &] (* Amiram Eldar, Jun 12 2022 *)
-
PARI
is(n)=my(d=numdiv(n>>valuation(n,2))); d%2 && n%d==0 \\ Charles R Greathouse IV, Feb 07 2017
Formula
Extensions
Example corrected by Harvey P. Dale, Jul 14 2011
Comments