cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049456 Triangle T(n,k) = denominator of fraction in k-th term of n-th row of variant of Farey series. This is also Stern's diatomic array read by rows (version 1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 4, 3, 5, 2, 5, 3, 4, 1, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13
Offset: 1

Views

Author

Keywords

Comments

Row n has length 2^(n-1) + 1.
A049455/a(n) gives another version of the Stern-Brocot tree.
Define mediant of a/b and c/d to be (a+c)/(b+d). We get A006842/A006843 if we omit terms from n-th row in which denominator exceeds n.
Largest term of n-th row = A000045(n+1), Fibonacci numbers. - Reinhard Zumkeller, Apr 02 2014

Examples

			0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456
Array begins
1...............................1
1...............2...............1
1.......3.......2.......3.......1
1...4...3...5...2...5...3...4...1
1.5.4.7.3.8.5.7.2.7.5.8.3.7.4.5.1
.................................
		

References

  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.

Crossrefs

Coincides with A002487 if pairs of adjacent 1's are replaced by single 1's.
Cf. A000051 (row lengths), A034472 (row sums), A293160 (distinct terms in each row).

Programs

  • Haskell
    import Data.List (transpose)
    a049456 n k = a049456_tabf !! (n-1) !! (k-1)
    a049456_row n = a049456_tabf !! (n-1)
    a049456_tabf = iterate
       (\row -> concat $ transpose [row, zipWith (+) row $ tail row]) [1, 1]
    -- Reinhard Zumkeller, Apr 02 2014
  • Maple
    A049456 := proc(n,k)
        option remember;
        if n =1 then
            if k >= 0 and k <=1 then
                1;
            else
                0 ;
            end if;
        elif type(k,'even') then
            procname(n-1,k/2) ;
        else
            procname(n-1,(k+1)/2)+procname(n-1,(k-1)/2) ;
        end if;
    end proc: # R. J. Mathar, Dec 12 2014
  • Mathematica
    Flatten[NestList[Riffle[#,Total/@Partition[#,2,1]]&,{1,1},10]] (* Harvey P. Dale, Mar 16 2013 *)

Formula

Each row is obtained by copying the previous row but interpolating the sums of pairs of adjacent terms. E.g. after 1 2 1 we get 1 1+2 2 2+1 1.
Row 1 of Farey tree is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.