A293160 Number of distinct terms in row n of Stern's diatomic array, A049456.
1, 1, 2, 3, 5, 7, 13, 20, 31, 48, 78, 118, 191, 300, 465, 734, 1175, 1850, 2926, 4597, 7296, 11552, 18278, 28863, 45832, 72356, 114742, 181721, 287926, 455748, 722458, 1144370, 1813975, 2873751, 4553643, 7213620, 11432169, 18120733, 28716294, 45491133
Offset: 0
Examples
Row 4 of A294442 contains eight fractions: 1/5, 4/5, 3/7, 4/7, 2/7, 2/7, 3/8, 5/8. There are five distinct numerators, so a(4) = 5.
Links
- R. J. Mathar, Java program to compute the sequence
- R. J. Mathar, The Kepler binary tree of reduced fractions
- Don Reble, C++ program for A135510 and A293160
Crossrefs
Programs
-
Maple
A049456 := proc(n, k) option remember; if n =1 then if k >= 0 and k <=1 then 1; else 0 ; end if; elif type(k, 'even') then procname(n-1, k/2) ; else procname(n-1, (k+1)/2)+procname(n-1, (k-1)/2) ; end if; end proc: # R. J. Mathar, Dec 12 2014 # A293160. This is not especially fast, but it will easily calculate the first 26 terms and confirm Barry Carter's values. rho:=n->[seq(A049456(n,k),k=0..2^(n-1))]; w:=n->nops(convert(rho(n),set)); [seq(w(n),n=1..26)]; # Alternative program: # S[n] is the list of fractions, written as pairs [i, j], in row n of Kepler's triangle; nc is the number of distinct numerators, and dc the number of distinct denominators S[0]:=[[1, 1]]; S[1]:=[[1, 2]]; nc:=[1, 1]; dc:=[1, 1]; for n from 2 to 18 do S[n]:=[]; for k from 1 to nops(S[n-1]) do t1:=S[n-1][k]; a:=[t1[1], t1[1]+t1[2]]; b:=[t1[2], t1[1]+t1[2]]; S[n]:=[op(S[n]), a, b]; od: listn:={}; for k from 1 to nops(S[n]) do listn:={op(listn), S[n][k][1]}; od: c:=nops(listn); nc:=[op(nc), c]; listd:={}; for k from 1 to nops(S[n]) do listd:={op(listd), S[n][k][2]}; od: c:=nops(listd); dc:=[op(dc), c]; od: nc; # this sequence dc; # A294444 # N. J. A. Sloane, Nov 20 2017
-
Mathematica
Length[Union[#]]& /@ NestList[Riffle[#, Total /@ Partition[#, 2, 1]]&, {1, 1}, 26] (* Jean-François Alcover, Mar 25 2020, after Harvey P. Dale in A049456 *) Map[Length@ Union@ Numerator@ # &, #] &@ Nest[Append[#, Flatten@ Map[{#1/(#1 + #2), #2/(#1 + #2)} & @@ {Numerator@ #, Denominator@ #} &, Last@ #]] &, {{1/1}, {1/2}}, 21] (* Michael De Vlieger, Apr 18 2018 *)
-
Python
from itertools import chain, product from functools import reduce def A293160(n): return n if n <= 1 else len({1}|set(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if y else (x[0]+x[1],x[1]),chain(k,(1,)),(1,0))) for k in product((False,True),repeat=n-2))) # Chai Wah Wu, Jun 20 2022
Extensions
a(28)-a(39) from Don Reble, Oct 16 2017
a(0) prepended and content related to Kepler's tree added from a duplicate entry (where the terms up to a(28) have been independently obtained by Michael De Vlieger) by Andrey Zabolotskiy, Dec 06 2024
Comments