A005581
a(n) = (n-1)*n*(n+4)/6.
Original entry on oeis.org
0, 0, 2, 7, 16, 30, 50, 77, 112, 156, 210, 275, 352, 442, 546, 665, 800, 952, 1122, 1311, 1520, 1750, 2002, 2277, 2576, 2900, 3250, 3627, 4032, 4466, 4930, 5425, 5952, 6512, 7106, 7735, 8400, 9102, 9842, 10621, 11440, 12300, 13202, 14147, 15136, 16170
Offset: 0
In hexagon ABCDEF, the "interior" triangles are ACE and BDF, and a(6-4)=a(2)=2. - _Toby Gottfried_, Nov 12 2011
G.f. = 2*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 50*x^6 + 77*x^7 + 112*x^8 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
- Joseph D. Konhauser, Dan Velleman and Stan Wagon,, Which Way Did the Bicycle Go?, MAA, 1996, p. 177.
- V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, Vol. 3 (1992), pp. 15-19. - Vladimir Shevelev, Apr 12 2010
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #51 (the case k=3) (First published: San Francisco: Holden-Day, Inc., 1964).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972. [Alternative scanned copy]
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
- Beáta Bényi, Miguel Méndez, José L. Ramírez and Tanay Wakhare, Restricted r-Stirling Numbers and their Combinatorial Applications, arXiv:1811.12897 [math.CO], 2018.
- John Elias, Illustration: Triangular Staircasing
- Richard K. Guy, Letter to N. J. A. Sloane, 1987.
- Richard K. Guy, Letter to N. J. A. Sloane, Feb 1988.
- F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart., Vol. 49, No. 3 (2011), pp. 231-243.
- Milan Janjic, Two Enumerative Functions.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, Vol. 11, No. 4 (1999), pp. 127-138.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, Vol. 9, No. 6 (1999), pp. 593-605.
- Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
- Alice McLeod and William Moser, Counting cyclic binary strings, Math. Mag., Vol. 80, No. 1 (2007), pp. 29-37.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Dead link]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube. [Cached copy, May 15 2013]
- Eric Weisstein's World of Mathematics, Trinomial Coefficient.
- Index entries for sequences related to Boolean functions.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
[(n-1)*n*(n+4)/6 : n in [0..50]]; // Wesley Ivan Hurt, Jul 10 2015
-
A005581 := n->(n-1)*n*(n+4)/6: seq(A005581(n), n=0..50);
a:=n->sum ((j+3)*j/2,j=0..n): seq(a(n),n=-1..49); # Zerinvary Lajos, Dec 17 2006
seq((n+3)*binomial(n,3)/n, n=1..46); # Zerinvary Lajos, Feb 28 2007
A005581:=-(-2+z)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
seq(sum(binomial(n,m), m=1..3)+n^2,n=-1..44); # Zerinvary Lajos, Jun 19 2008
A005581 := n -> GegenbauerC(`if`(3A005581(n)), n=0..50); # Peter Luschny, May 10 2016
-
Table[(n-1)*n*(n+4)/6, {n,0,50}] (* Stefan Steinerberger, Apr 10 2006 *)
LinearRecurrence[{4,-6,4,-1},{0,0,2,7},50] (* Harvey P. Dale, Sep 22 2012 *)
-
A005581(n):=(n-1)*n*(n+4)/6$ makelist(A005581(n),n,0,50); /* Martin Ettl, Dec 18 2012 */
-
{a(n) = n * (n+4) * (n-1) / 6}; /* Michael Somos, Apr 13 2007 */
-
concat([0, 0], Vec((x^2)*(2-x)/(1-x)^4 + O(x^50))) \\ Altug Alkan, Dec 10 2015
-
[(n-1)*n*(n+4)/6 for n in range(50)] # Danny Rorabaugh, Apr 20 2015
More terms from Larry Reeves (larryr(AT)acm.org), Jun 01 2000
A005582
a(n) = n*(n+1)*(n+2)*(n+7)/24.
Original entry on oeis.org
0, 2, 9, 25, 55, 105, 182, 294, 450, 660, 935, 1287, 1729, 2275, 2940, 3740, 4692, 5814, 7125, 8645, 10395, 12397, 14674, 17250, 20150, 23400, 27027, 31059, 35525, 40455, 45880, 51832, 58344, 65450, 73185, 81585, 90687, 100529, 111150, 122590, 134890
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
- Vladimir S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #51 (the case k=4) (First published: San Francisco: Holden-Day, Inc., 1964)
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Richard K. Guy, Letter to N. J. A. Sloane, Feb 1988
- F. T. Howard and Curtis Cooper, Some identities for r-Fibonacci numbers, Fibonacci Quart. 49 (2011), no. 3, 231-243.
- Milan Janjic, Two Enumerative Functions
- P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-380. [See p. 301]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[seq(binomial(n,4)+2*binomial(n,3), n=2..43)]; # Zerinvary Lajos, Jul 26 2006
seq((n+4)*binomial(n,4)/n, n=3..43); # Zerinvary Lajos, Feb 28 2007
A005582:=(-2+z)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[n(n+1)(n+2)(n+7)/24,{n,0,40}] (* Harvey P. Dale, Jun 01 2012 *)
-
concat(0, Vec(x*(2-x)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Dec 10 2015
More terms from Larry Reeves (larryr(AT)acm.org), Jun 01 2000
A176222
a(n) = (n^2 - 3*n + 1 + (-1)^n)/2.
Original entry on oeis.org
0, 3, 5, 10, 14, 21, 27, 36, 44, 55, 65, 78, 90, 105, 119, 136, 152, 171, 189, 210, 230, 253, 275, 300, 324, 351, 377, 406, 434, 465, 495, 528, 560, 595, 629, 666, 702, 741, 779, 820, 860, 903, 945, 990, 1034, 1081, 1127, 1176, 1224, 1275, 1325, 1378, 1430
Offset: 3
For n=5 the reference matrix is:
11001
11100
01110
00111
10011
There are 2^(3*n) = 32768 0-1 matrices obtained from removing one or more 1's in it.
There are 305 such matrices with permanent 4 and there are 13 such matrices with exactly two 1's in every column and every row.
There are 5 matrices having both properties. One of them is:
10001
01100
01100
00011
10010
From _Aaron Khan_, Jul 05 2022: (Start)
Examples of the sequence when used for kings on a chessboard:
.
A solution illustrating a(2)=3:
+-------+
| B B B |
| . . . |
| W W W |
+-------+
.
A solution illustrating a(3)=5:
+---------+
| B B B B |
| B . . . |
| . . . W |
| W W W W |
+---------+
(End)
- V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3 (1992), 15-19.
- G. C. Greubel, Table of n, a(n) for n = 3..1000
- Paul Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv preprint arXiv:1205.2565 [math.CO], 2012.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
-
[(n^2-3*n+1+(-1)^n)/2: n in [3..100]]; // Vincenzo Librandi, Mar 24 2011
-
A176222:=n->(n^2-3*n+1+(-1)^n)/2: seq(A176222(n), n=3..100); # Wesley Ivan Hurt, May 25 2015
-
Table[(n^2 - 3*n + 1 + (-1)^n)/2, {n, 3, 100}] (* or *) CoefficientList[Series[x (x - 3)/((1 + x)*(x - 1)^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, May 25 2015 *)
LinearRecurrence[{2,0,-2,1},{0,3,5,10},90] (* Harvey P. Dale, Jan 14 2024 *)
-
a(n)=(n^2-3*n+1+(-1)^n)/2 \\ Charles R Greathouse IV, Oct 16 2015
-
[n*(n-3)/2 + ((n+1)%2) for n in (3..60)] # G. C. Greubel, Mar 22 2022
Matrix class definition checked, edited and illustrated by
Olivier Gérard, Mar 26 2011
A052953
Expansion of 2*(1-x-x^2)/((1-x)*(1+x)*(1-2*x)).
Original entry on oeis.org
2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Apart from initial term, equals
A026644(n+1) + 2.
-
List([0..40], n-> (2^(n+1) +3 +(-1)^n)/3); # G. C. Greubel, Oct 21 2019
-
[(2^(n+1) +3 +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Oct 21 2019
-
spec:= [S,{S=Union(Sequence(Union(Prod(Union(Z,Z),Z),Z)),Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
seq((2^(n+1) +3 +(-1)^n)/3, n=0..40); # G. C. Greubel, Oct 21 2019
-
LinearRecurrence[{2,1,-2}, {2,2,4}, 40] (* G. C. Greubel, Oct 22 2019 *)
CoefficientList[Series[2(1-x-x^2)/((1-x)(1+x)(1-2x)),{x,0,40}],x] (* Harvey P. Dale, Aug 03 2025 *)
-
vector(41, n, (2^n +3 -(-1)^n)/3 ) \\ G. C. Greubel, Oct 21 2019
-
[(2^(n+1) +3 +(-1)^n)/3 for n in (0..40)] # G. C. Greubel, Oct 21 2019
A153643
Jacobsthal numbers A001045 incremented by 2.
Original entry on oeis.org
2, 3, 3, 5, 7, 13, 23, 45, 87, 173, 343, 685, 1367, 2733, 5463, 10925, 21847, 43693, 87383, 174765, 349527, 699053, 1398103, 2796205, 5592407, 11184813, 22369623, 44739245, 89478487, 178956973, 357913943, 715827885, 1431655767, 2863311533, 5726623063
Offset: 0
-
a:=[2,3,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Apr 02 2019
-
I:=[2,3,3]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Apr 02 2019
-
LinearRecurrence[{1,2},{0,1}, 40] + 2 (* Harvey P. Dale, May 26 2014 *)
LinearRecurrence[{2,1,-2},{2,3,3}, 40] (* Georg Fischer, Apr 02 2019 *)
-
my(x='x+O('x^40)); Vec( (2-x-5*x^2)/((1-x^2)*(1-2*x)) ) \\ G. C. Greubel, Apr 02 2019
-
def A153643(n): return ((1<Chai Wah Wu, Apr 18 2025
-
((2-x-5*x^2)/((1-x^2)*(1-2*x))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019
A153772
a(n) = (2^n + 2*(-1)^n - 6)/3.
Original entry on oeis.org
-1, -2, 0, 0, 4, 8, 20, 40, 84, 168, 340, 680, 1364, 2728, 5460, 10920, 21844, 43688, 87380, 174760, 349524, 699048, 1398100, 2796200, 5592404, 11184808, 22369620, 44739240, 89478484, 178956968, 357913940, 715827880
Offset: 0
-
[2^n/3 +2*(-1)^n/3-2: n in [0..40]]; // Vincenzo Librandi, Aug 07 2011
-
Table[(2^n + 2*(-1)^n - 6)/3, {n,0,25}] (* or *) LinearRecurrence[{2, 1, -2}, {-1, -2, 0}, 25] (* G. C. Greubel, Aug 27 2016 *)
-
a(n)=(2^n+2*(-1)^n-6)/3 \\ Charles R Greathouse IV, Aug 28 2016
A128208
Inverse of number triangle A128210.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 0, 5, 1, 0, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 21, 1, 0, 0, 0, 0, 0, 0, 43, 1, 0, 0, 0, 0, 0, 0, 0, 85, 1, 0, 0, 0, 0, 0, 0, 0, 0, 171, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 341, 1
Offset: 0
Triangle begins:
1;
1, 1;
0, 1, 1;
0, 0, 3, 1;
0, 0, 0, 5, 1;
0, 0, 0, 0, 11, 1;
0, 0, 0, 0, 0, 21, 1;
0, 0, 0, 0, 0, 0, 43, 1;
0, 0, 0, 0, 0, 0, 0, 85, 1;
0, 0, 0, 0, 0, 0, 0, 0, 171, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 341, 1;
...
A154890
Jacobsthal numbers A001045 alternatingly incremented by 3 and 5.
Original entry on oeis.org
3, 6, 4, 8, 8, 16, 24, 48, 88, 176, 344, 688, 1368, 2736, 5464, 10928, 21848, 43696, 87384, 174768, 349528, 699056, 1398104, 2796208, 5592408, 11184816, 22369624, 44739248, 89478488, 178956976, 357913944, 715827888, 1431655768, 2863311536, 5726623064
Offset: 0
Original entry on oeis.org
-1, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531
Offset: 0
-
Concatenation([-1], List([1..35], n-> (2^n -(-1)^n)/3) ); # G. C. Greubel, Dec 01 2019
-
[-1] cat [(2^n -(-1)^n)/3 : n in [1..35]]; // G. C. Greubel, Dec 01 2019
-
seq( `if`(n=0, -1, (2^n -(-1)^n)/3), n=0..35); # G. C. Greubel, Dec 01 2019
-
CoefficientList[Series[(2*x-1+2*x^2)/((1+x)*(1-2*x)), {x, 0, 35}], x] (* G. C. Greubel, Jun 04 2016 *)
Table[If[n==0, -1, (2^n -(-1)^n)/3], {n,0,35}] (* G. C. Greubel, Dec 01 2019 *)
LinearRecurrence[{1,2},{-1,1,1},40] (* Harvey P. Dale, Jul 23 2025 *)
-
vector(36, n, if(n==1, -1, (2^(n-1) +(-1)^n)/3 ) ) \\ G. C. Greubel, Dec 01 2019
-
[-1]+[lucas_number1(n, 1, -2) for n in (1..35)] # G. C. Greubel, Dec 01 2019
A364214
Numbers whose canonical representation as a sum of distinct Jacobsthal numbers (A280049) is palindromic.
Original entry on oeis.org
1, 2, 4, 5, 6, 10, 12, 15, 18, 21, 22, 30, 34, 42, 44, 49, 58, 63, 66, 71, 80, 85, 86, 102, 110, 126, 130, 146, 154, 170, 172, 183, 198, 209, 218, 229, 244, 255, 258, 269, 284, 295, 304, 315, 330, 341, 342, 374, 390, 422, 430, 462, 478, 510, 514, 546, 562, 594
Offset: 1
The first 10 terms are:
n a(n) A280049(a(n))
-- ---- -------------
1 1 1
2 2 11
3 4 101
4 5 111
5 6 1001
6 10 1111
7 12 10001
8 15 10101
9 18 11011
10 21 11111
Similar sequences:
A002113,
A006995,
A014190,
A094202,
A331191,
A351712,
A351717,
A352087,
A352105,
A352319,
A352341.
-
Position[Select[Range[1000], EvenQ[IntegerExponent[#, 2]] &], _?(PalindromeQ[IntegerDigits[#, 2]] &)] // Flatten
-
s(n) = if(n < 2, n > 0, n = s(n-1); until(valuation(n, 2)%2 == 0, n++); n); \\ A003159
is(n) = {my(d = binary(s(n))); d == Vecrev(d);}
Showing 1-10 of 14 results.
Comments