cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A010684 Period 2: repeat (1,3); offset 0.

Original entry on oeis.org

1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is [1,-8,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Mar 29 2007
Binomial transform gives [1,4,8,16,32,64,...] (A151821(n+1)). - Philippe Deléham, Sep 17 2009
Continued fraction expansion of (3+sqrt(21))/6. - Klaus Brockhaus, May 04 2010
Positive sum of the coordinates from the image of the point (1,-2) after n 90-degree rotations about the origin. - Wesley Ivan Hurt, Jul 06 2013
This sequence can be generated by an infinite number of formulas having the form a^(b*n) mod c where a is congruent to 3 mod 4 and b is any odd number. If a is congruent to 3 mod 4 then c can be 4; if a is also congruent to 3 mod 8 then c can be 8. For example: a(n)= 15^(3*n) mod 4, a(n) = 19^(5*n) mod 4, a(n) = 19^(5*n) mod 8. - Gary Detlefs, May 19 2014
This sequence is also the unsigned periodic Schick sequence for p = 5. See the Schick reference, p. 158, for p = 5.- Wolfdieter Lang, Apr 03 2020
Digits following the decimal point when 1/3 is converted to base 5. - Jamie Robert Creasey, Oct 15 2021
Decimal expansion of 13/99. - Stefano Spezia, Feb 09 2025

Examples

			0.131313131313131313131313131313131313131313131...
		

References

  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.

Crossrefs

Cf. A112030, A112033, A176014 (decimal expansion of (3+sqrt(21))/6).

Programs

Formula

From Paul Barry, Apr 29 2003: (Start)
a(n) = 2-(-1)^n.
G.f.: (1+3x)/((1-x)(1+x)).
E.g.f.: 2*exp(x) - exp(-x). (End)
a(n) = 2*A153643(n) - A153643(n+1). - Paul Curtz, Dec 30 2008
a(n) = 3^(n mod 2). - Jaume Oliver Lafont, Mar 27 2009
a(n) = 7^n mod 4. - Vincenzo Librandi, Feb 07 2011
a(n) = 1 + 2*(n mod 2). - Wesley Ivan Hurt, Jul 06 2013
a(n) = A000034(n) + A000035(n). - James Spahlinger, Feb 14 2016

A128209 Jacobsthal numbers(A001045) + 1.

Original entry on oeis.org

1, 2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532, 5726623062
Offset: 0

Views

Author

Paul Barry, Feb 19 2007

Keywords

Comments

Row sums of A128208.
Essentially the same as A052953. - R. J. Mathar, Jun 14 2008
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n >= 1, a(n+1) is the number of different representations of matrix P^(-1)+I+P by sum of permutation matrices. - Vladimir Shevelev, Apr 12 2010
a(n) is the rank of Fibonacci(n+2) in row n of A049456 (regarded as an irregular triangle read by rows). - N. J. A. Sloane, Nov 23 2016

References

  • V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]

Crossrefs

Programs

Formula

a(n) = 1 + 2^n/3 - (-1)^n/3.
G.f.: (1-3*x^2)/(1 - 2*x - x^2 + 2*x^3).

A163834 a(n) = (4^n + 5)/3.

Original entry on oeis.org

2, 3, 7, 23, 87, 343, 1367, 5463, 21847, 87383, 349527, 1398103, 5592407, 22369623, 89478487, 357913943, 1431655767, 5726623063, 22906492247, 91625968983, 366503875927, 1466015503703, 5864062014807, 23456248059223, 93824992236887, 375299968947543
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Aug 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(4^n + 5)/3, {n, 0, 50}] (* G. C. Greubel, Aug 05 2017 *)
    LinearRecurrence[{5,-4},{2,3},30] (* Harvey P. Dale, Jun 14 2023 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((2-7*x)/((4*x-1)*(x-1)))) \\ G. C. Greubel, Aug 05 2017

Formula

a(n) = (4^n + 5)/3 = A135351(2*n+1) = A140966(2*n) = A153643(2*n).
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: (2-7*x)/((4*x-1)*(x-1)).
a(n+1) - a(n) = A000302(n).
E.g.f.: (1/3)*(5*exp(x) + exp(4*x)). - G. C. Greubel, Aug 05 2017

Extensions

Offset set to 0 by R. J. Mathar, Aug 06 2009

A213526 a(n) = 3*n AND n, where AND is the bitwise AND operator.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 5, 8, 9, 10, 1, 4, 5, 10, 13, 16, 17, 18, 17, 20, 21, 2, 5, 8, 9, 10, 17, 20, 21, 26, 29, 32, 33, 34, 33, 36, 37, 34, 37, 40, 41, 42, 1, 4, 5, 10, 13, 16, 17, 18, 17, 20, 21, 34, 37, 40, 41, 42, 49, 52, 53, 58, 61, 64, 65, 66, 65, 68
Offset: 0

Views

Author

Alex Ratushnyak, Jun 13 2012

Keywords

Comments

Indices of 1's: A007583(n),
indices of 2's: A047849(n+1),
indices of 4's: A039301(n+2),
indices of 5's: A153643(n+3),
indices of 8's: A155701(n+2),
indices of 9's: A155701(n+2)+1 = A163868(n+2),
indices of 10's: A153643(n+4)+3^((n+1) mod 2),
indices of 13's: A039301(n+3)+3,
indices of 16's: A039301(n+3)+4,
indices of 17's: 17, 19, 27, 49, 51, 91, 177, 179, 347, 689, 691, 1371, 2737, 2739, 5467, 10929, 10931, 21851, 43697, 43699, 87387, 174769, 174771, 349531, 699057, 699059, 1398107, 2796209, 2796211, 5592411, 11184817, 11184819, 22369627, 44739249, 44739251, 89478491, ...
indices of 18's: A039301(n+3)+6,
n's such that a(n)<3: A005578, except the first term.

Programs

  • Maple
    a:= proc(n) local i, k, m, r;
          k, m, r:= n, 3*n, 0;
          for i from 0 while (m>0 or k>0) do
            r:= r +2^i* irem(m, 2, 'm') *irem(k, 2, 'k')
          od; r
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 22 2012
  • Mathematica
    Table[BitAnd[n, 3*n], {n, 0, 68}] (* Arkadiusz Wesolowski, Jun 23 2012 *)
  • PARI
    a(n)=bitand(n,3*n) \\ Charles R Greathouse IV, Feb 05 2013
  • Python
    for n in range(99):
        print(3*n & n, end=',')
    

A154890 Jacobsthal numbers A001045 alternatingly incremented by 3 and 5.

Original entry on oeis.org

3, 6, 4, 8, 8, 16, 24, 48, 88, 176, 344, 688, 1368, 2736, 5464, 10928, 21848, 43696, 87384, 174768, 349528, 699056, 1398104, 2796208, 5592408, 11184816, 22369624, 44739248, 89478488, 178956976, 357913944, 715827888, 1431655768, 2863311536, 5726623064
Offset: 0

Views

Author

Paul Curtz, Jan 17 2009

Keywords

Formula

a(2n+1) = 2*a(2n).
a(n) = A153643(n)+A010684(n).
a(n+2) = 4*A128209(n).
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3). G.f.: (3-11x^2)/((1-x)(1+x)(1-2x)). [R. J. Mathar, Jan 23 2009]

Extensions

Edited and extended by R. J. Mathar, Jan 23 2009
Showing 1-5 of 5 results.