cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A078008 Expansion of (1 - x)/((1 + x)*(1 - 2*x)).

Original entry on oeis.org

1, 0, 2, 2, 6, 10, 22, 42, 86, 170, 342, 682, 1366, 2730, 5462, 10922, 21846, 43690, 87382, 174762, 349526, 699050, 1398102, 2796202, 5592406, 11184810, 22369622, 44739242, 89478486, 178956970, 357913942, 715827882, 1431655766, 2863311530, 5726623062
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Conjecture: a(n) = the number of fractions in the infinite Farey row of 2^n terms with even denominators. Compare the Salamin & Gosper item in the Beeler et al. link. - Gary W. Adamson, Oct 27 2003
Counts closed walks starting and ending at the same vertex of a triangle. 3*a(n) = P(C_n, 3) chromatic polynomial for 3 colors on cyclic graph C_n. A078008(n) + 2*A001045(n) = 2^n provides decomposition of Pascal's triangle. - Paul Barry, Nov 17 2003
Permutations with one fixed point avoiding 123 and 132.
General form: iterate k -> 2^n - k. See also A001045. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
The inverse g.f. generates sequence 1, 0, -2, -2, -2, -2, ...
a(n) gives the number of oriented (i.e., unreduced for symmetry) meanders on an (n+2) X 3 rectangular grid; see A201145. - Jon Wild, Nov 22 2011
Pisano period lengths: 1, 1, 6, 1, 4, 6, 6, 2, 18, 4, 10, 6, 12, 6, 12, 2, 8, 18, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(n) is the number of length n binary words that end in an odd length run of 0's if we do not include the first letter of the word in our run length count. a(4) =6 because we have 0000, 0010, 0110, 1000, 1010, 1110. - Geoffrey Critzer, Dec 16 2013
a(n) is the top left entry of the n-th power of any of the six 3 X 3 matrices [0, 1, 1; 1, 1, 1; 1, 0, 0], [0, 1, 1; 1, 1, 0; 1, 1, 0], [0, 1, 1; 1, 0, 1; 1, 1, 0], [0, 1, 1; 1, 1, 0; 1, 0, 1], [0, 1, 1; 1, 0, 1; 1, 0, 1] or [0, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 04 2014
a(n) is the number of compositions of n into parts of two kinds without part 1. - Gregory L. Simay, Jun 04 2018
a(n) is the number of words of length n over a binary alphabet whose position in the lexicographic order is a multiple of three. a(3) = 2: aba, bab. - Alois P. Heinz, Apr 13 2022
a(n) is the number of words of length n over a ternary alphabet starting with a fixed letter (say, 'a') and ending in a different letter, such that no two adjacent letters are the same. a(4) = 6: abab, abac, abcb, acab, acac, acbc. - Ignat Soroko, Jul 19 2023

Examples

			G.f. = 1 + 2*x^2 + 2*x^3 + 6*x^4 + 10*x^5 + 22*x^6 + ... - _Michael Somos_, Mar 18 2022
		

References

  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 1.1.10a.

Crossrefs

First differences of A001045.
See A151575 for a signed version.
Bisections: A047849, A020988.

Programs

Formula

Euler expands(1-x)/(1 - x - 2*x^2) into an infinite series and finds that the coefficient of the n-th term is (2^n + (-1)^n 2)/3. Section 226 shows that Euler could have easily found the recursion relation: a(n) = a(n-1) + 2a(n-2) with a(0) = 1 and a(1) = 0. - V. Frederick Rickey (fred-rickey(AT)usma.edu), Feb 10 2006. [Typos corrected by Jaume Oliver Lafont, Jun 01 2009]
a(n) = Sum_{k=0..floor(n/3)} binomial(n, f(n)+3*k) where f(n) = (0, 2, 1, 0, 2, 1, ...) = A080424(n). - Paul Barry, Feb 20 2003
E.g.f. (exp(2*x) + 2*exp(-x))/3. - Paul Barry, Apr 20 2003
a(n) = A001045(n) + (-1)^n = A000079(n) - 2*A001045(n). - Paul Barry, Feb 20 2003
a(n) = (2^n + 2*(-1)^n)/3. - Mario Catalani (mario.catalani(AT)unito.it), Aug 29 2003
a(n) = T(n, i/(2*sqrt(2)))*(-i*sqrt(2))^n - U(n-1, i/(2*sqrt(2)))*(-i*sqrt(2))^(n-1)/2. - Paul Barry, Nov 17 2003
From Paul Barry, Jul 30 2004: (Start)
a(n) = 2*a(n-1) + 2*(-1)^n for n > 0, with a(0)=1.
a(n) = Sum_{k=0..n} (-1)^k*(2^(n-k-1) + 0^(n-k)/2). (End)
a(n) = A014113(n-1) for n > 0; a(n) = A052953(n-1) - 2*(n mod 2) = sum of n-th row of the triangle in A108561. - Reinhard Zumkeller, Jun 10 2005
A137208(n+1) - 2*A137208(n) = a(n) signed. - Paul Curtz, Aug 03 2008
a(n) = A001045(n+1) - A001045(n) - Paul Curtz, Feb 09 2009
If p[1] =0, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
a(n) = 2*(a(n-2) + a(n-3) + a(n-4) ... + a(0)), that is, twice the sum of all the previous terms except the last; with a(0) = 1 and a(1) = 0. - Benoit Jubin, Nov 21 2011
a(n+1) = 2*A001045(n). - Benoit Jubin, Nov 22 2011
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + 2*x^2 + (2*k+3)*x - x*(2*k+1 + 2*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: 1+ x^2*Q(0), where Q(k) = 1 + 1/(1 - x*(4*k+1+2*x)/(x*(4*k+3+2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 01 2014
a(n) = 3*a(n-2) + 2*a(n-3). - David Neil McGrath, Sep 10 2014
a(n) = (-1)^n * A151575(n). - G. C. Greubel, Jun 28 2019
a(n)+a(n+1) = 2^n. - R. J. Mathar, Feb 24 2021
a(n) = -a(2-n) * (-2)^(n-1) = (3/2)*(a(n-1) + a(n-2)) - a(n-3) for all n in Z. - Michael Somos, Mar 18 2022

A112468 Riordan array (1/(1-x), x/(1+x)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, 0, 2, -2, 1, 1, 1, -2, 4, -3, 1, 1, 0, 3, -6, 7, -4, 1, 1, 1, -3, 9, -13, 11, -5, 1, 1, 0, 4, -12, 22, -24, 16, -6, 1, 1, 1, -4, 16, -34, 46, -40, 22, -7, 1, 1, 0, 5, -20, 50, -80, 86, -62, 29, -8, 1, 1, 1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 1, 0, 6, -30, 95, -200, 296, -314, 239, -128, 46, -10, 1
Offset: 0

Views

Author

Paul Barry, Sep 06 2005

Keywords

Comments

Row sums are A040000. Diagonal sums are A112469. Inverse is A112467. Row sums of k-th power are 1, k+1, k+1, k+1, .... Note that C(n,k) = Sum_{j=0..n-k} C(n-j-1, n-k-j).
Equals row reversal of triangle A112555 up to sign, where log(A112555) = A112555 - I. Unsigned row sums equals A052953 (Jacobsthal numbers + 1). Central terms of even-indexed rows are a signed version of A072547. Sums of squared terms in rows yields A112556, which equals the first differences of the unsigned central terms. - Paul D. Hanna, Jan 20 2006
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A040000(n), A005408(n), A033484(n), A048473(n), A020989(n), A057651(n), A061801(n), A238275(n), A238276(n), A138894(n), A090843(n), A199023(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively (see the square array in A112739). - Philippe Deléham, Feb 22 2014

Examples

			Triangle starts
  1;
  1,  1;
  1,  0,  1;
  1,  1, -1,  1;
  1,  0,  2, -2,  1;
  1,  1, -2,  4, -3,  1;
  1,  0,  3, -6,  7, -4,  1;
Matrix log begins:
  0;
  1,  0;
  1,  0,  0;
  1,  1, -1,  0;
  1,  1,  1, -2,  0;
  1,  1,  1,  1, -3,  0; ...
Production matrix begins
  1,  1,
  0, -1,  1,
  0,  0, -1,  1,
  0,  0,  0, -1,  1,
  0,  0,  0,  0, -1,  1,
  0,  0,  0,  0,  0, -1,  1,
  0,  0,  0,  0,  0,  0, -1,  1.
- _Paul Barry_, Apr 08 2011
		

Crossrefs

Cf. A174294, A174295, A174296, A174297. - Mats Granvik, Mar 15 2010
Cf. A072547 (central terms), A112555 (reversed rows), A112465, A052953, A112556, A112739, A119258.
See A279006 for another version.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        else return T(n-1,k-1) - T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 13 2019
  • Haskell
    a112468 n k = a112468_tabl !! n !! k
    a112468_row n = a112468_tabl !! n
    a112468_tabl = iterate (\xs -> zipWith (-) ([2] ++ xs) (xs ++ [0])) [1]
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Magma
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return T(n-1,k-1) - T(n-1,k);
      end if;
      return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    T := (n,k,m) -> (1-m)^(-n+k)-m^(k+1)*pochhammer(n-k,k+1)*hypergeom( [1,n+1],[k+2],m)/(k+1)!; A112468 := (n,k) -> T(n,n-k,-1);
    seq(print(seq(simplify(A112468(n,k)),k=0..n)),n=0..10); # Peter Luschny, Jul 25 2014
  • Mathematica
    T[n_, 0] = 1; T[n_, n_] = 1; T[n_, k_ ]:= T[n, k] = T[n-1, k-1] - T[n-1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {T(n,k)=local(m=1,x=X+X*O(X^n),y=Y+Y*O(Y^k)); polcoeff(polcoeff((1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x),n,X),k,Y)} \\ Paul D. Hanna, Jan 20 2006
    
  • PARI
    T(n,k) = if(k==0 || k==n, 1, T(n-1, k-1) - T(n-1, k)); \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or n<0): return 0
        elif (k==0 or k==n): return 1
        else: return T(n-1, k-1) - T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 13 2019
    

Formula

Triangle T(n,k) read by rows: T(n,0)=1, T(n,k) = T(n-1,k-1) - T(n-1,k). - Mats Granvik, Mar 15 2010
Number triangle T(n, k)= Sum_{j=0..n-k} C(n-j-1, n-k-j)*(-1)^(n-k-j).
G.f. of matrix power T^m: (1+(m-1)*x)*(1+m*x)/(1+m*x-x*y)/(1-x). G.f. of matrix log: x*(1-2*x*y+x^2*y)/(1-x*y)^2/(1-x). - Paul D. Hanna, Jan 20 2006
T(n, k) = R(n,n-k,-1) where R(n,k,m) = (1-m)^(-n+k)-m^(k+1)*Pochhammer(n-k,k+1)*hyper2F1([1,n+1],[k+2],m)/(k+1)!. - Peter Luschny, Jul 25 2014

A026644 a(n) = a(n-1) + 2*a(n-2) + 2, for n>=3, where a(0)= 1, a(1)= 2, a(2)= 4.

Original entry on oeis.org

1, 2, 4, 10, 20, 42, 84, 170, 340, 682, 1364, 2730, 5460, 10922, 21844, 43690, 87380, 174762, 349524, 699050, 1398100, 2796202, 5592404, 11184810, 22369620, 44739242, 89478484, 178956970, 357913940, 715827882, 1431655764, 2863311530, 5726623060
Offset: 0

Views

Author

Keywords

Comments

Number of moves to solve Chinese rings puzzle.
a(n-1) (with a(0):=0) enumerates all sequences of length m=1,2,...,floor(n/2) with nonzero integer entries n_i satisfying sum |n_i| <= n-m. Rephrasing K. A. Meissner's example p. 6. Example n=4: from length m=1: [1], [2], [3], each in 2 signed versions; from m=2: [1,1] in 2^2 = 4 signed versions. Hence a(3) = a(4-1) = 3*2 + 1*4 = 10.
Also the number of different 3-colorings (out of 4 colors) for the vertices of all triangulated planar polygons on a base with n+1 vertices if the colors of the two base vertices are fixed. - Patrick Labarque, Mar 23 2010
For n > 0, also the total distance that the disks travel from the leftmost peg to the rightmost peg in the Tower of Hanoi puzzle, in the unique solution with 2^n-1 moves (see links). - Sela Fried, Dec 17 2023

References

  • Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991.
  • Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993.

Crossrefs

Row sums of A026637.
For n >= 1, equals twice A000975, also A001045 - 1.
A167030 is an essentially identical sequence.

Programs

  • Magma
    [n eq 0 select 1 else (2^(n+2) -3-(-1)^n)/3 : n in [0..40]]; // G. C. Greubel, Jun 28 2024
    
  • Maple
    f:=n-> if n mod 2 = 0 then (2^(n+2)-4)/3 else (2^(n+2)-2)/3; fi;
  • Mathematica
    Join[{1}, Floor[(2^Range[3, 40] - 2)/3]] (* or *) LinearRecurrence[{2,1,-2},{1,2,4,10},40] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
    CoefficientList[Series[(1-x^2+2x^3)/((1-x)(1-x-2x^2)),{x,0,1001}],x] (* Vincenzo Librandi, Apr 04 2012 *)
  • PARI
    Vec((1-x^2+2*x^3)/(1-x)/(1-x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Apr 04 2012
    
  • Python
    def A026644(n): return ((4<Chai Wah Wu, Apr 17 2025
  • SageMath
    [(2^(n+2)-3-(-1)^n)/3 + int(n==0) for n in range(41)] # G. C. Greubel, Jun 28 2024
    

Formula

a(2*k) = 2*a(2*k-1), a(2*k+1) = 2*a(2*k) + 2. - Peter Shor, Apr 11 2002
For n>0: a(n+1) = a(n) + 2*b(n+1) + 4*b(n), where b(k) = A001045(k). - N. J. A. Sloane, May 16 2003
For n>0: if n mod 2 = 0 then (2^(n+2)-4)/3 else (2^(n+2)-2)/3. - Richard Hess
a(2*n) = 2*n-1 + Sum_{k=0..2*n-1} a(k), n>0; a(2*n+1) = 2*n+1 + Sum_{k=0..n} a(k). - Lee Hae-hwang, Sep 17 2002; corrected by R. J. Mathar, Oct 21 2008
a(n) = 2*n + 2*Sum_{k=1..n-2} a(k), n>0. - Lee Hae-hwang, Sep 19 2002; corrected by R. J. Mathar, Oct 21 2008
From Paul Barry, Oct 24 2007: (Start)
G.f.: (1 - x^2 + 2*x^3)/((1 - x)*(1 - x - 2*x^2)).
a(n) = J(n+2) - 1 + 0^n, where J(n) = A001045(n) (Jacobsthal numbers).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n) = 0^n + Sum_{k=0..n} (2 - 2*0^(n-k))*J(k+1). (End)
a(n) = A052953(n+1) - 2, n>0. [Moved from A020988, R. J. Mathar, Oct 21 2008]
a(n) = floor(A097074(n+1)/2), n>0. - Gary Detlefs, Dec 19 2010
a(n) = A169969(2*n-1) - 1, n>=2; a(n) = 3*2^(n-1) - 1 - A169969(2*n-7), n>=5 . - Yosu Yurramendi, Jul 05 2016
a(n+3) = 3*2^(n+2) - 2 - a(n), n>=1, a(1)=2, a(2)=4, a(3)=10 . - Yosu Yurramendi, Jul 05 2016
a(n) + A084170(n) = 3*2^n - 2, n>=1. - Yosu Yurramendi, Jul 05 2016
E.g.f: (3 - 4*cosh(x) + 4*cosh(2*x) - 2*sinh(x) + 4*sinh(2*x))/3. - Ilya Gutkovskiy, Jul 05 2016
a(n+3) = 9*2^n + A084170(n), n>=0. - Yosu Yurramendi, Jul 07 2016
a(n) = A000975(n+1) - A000035(n+1), n>0, a(0)=1. - Yuchun Ji, Aug 05 2020

Extensions

Recurrence in definition line found by Lee Hae-hwang, Apr 03 2002

A108561 Triangle read by rows: T(n,0)=1, T(n,n)=(-1)^n, T(n+1,k)=T(n,k-1)+T(n,k) for 0 < k < n.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 1, -1, 1, 2, 2, 0, 1, 1, 3, 4, 2, 1, -1, 1, 4, 7, 6, 3, 0, 1, 1, 5, 11, 13, 9, 3, 1, -1, 1, 6, 16, 24, 22, 12, 4, 0, 1, 1, 7, 22, 40, 46, 34, 16, 4, 1, -1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 0, 1, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, -1, 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 0, 1, 1, 11, 56, 174, 367
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 10 2005

Keywords

Comments

Sum_{k=0..n} T(n,k) = A078008(n);
Sum_{k=0..n} abs(T(n,k)) = A052953(n-1) for n > 0;
T(n,1) = n - 2 for n > 1;
T(n,2) = A000124(n-3) for n > 2;
T(n,3) = A003600(n-4) for n > 4;
T(n,n-6) = A001753(n-6) for n > 6;
T(n,n-5) = A001752(n-5) for n > 5;
T(n,n-4) = A002623(n-4) for n > 4;
T(n,n-3) = A002620(n-1) for n > 3;
T(n,n-2) = A008619(n-2) for n > 2;
T(n,n-1) = n mod 2 for n > 0;
T(2*n,n) = A072547(n+1).
Sum_{k=0..n} T(n,k)*x^k = A232015(n), A078008(n), A000012(n), A040000(n), A001045(n+2), A140725(n+1) for x = 2, 1, 0, -1, -2, -3 respectively. - Philippe Deléham, Nov 17 2013, Nov 19 2013
(1,a^n) Pascal triangle with a = -1. - Philippe Deléham, Dec 27 2013
T(n,k) = A112465(n,n-k). - Reinhard Zumkeller, Jan 03 2014

Examples

			From _Philippe Deléham_, Nov 17 2013: (Start)
Triangle begins:
  1;
  1, -1;
  1,  0,  1;
  1,  1,  1, -1;
  1,  2,  2,  0,  1;
  1,  3,  4,  2,  1, -1;
  1,  4,  7,  6,  3,  0,  1; (End)
		

Crossrefs

Cf. A007318 (a=1), A008949(a=2), A164844(a=10).
Similar to the triangles A035317, A059259, A080242, A112555.
Cf. A072547 (central terms).

Programs

  • GAP
    Flat(List([0..13],n->List([0..n],k->Sum([0..k],i->Binomial(n,i)*(-2)^(k-i))))); # Muniru A Asiru, Feb 19 2018
  • Haskell
    a108561 n k = a108561_tabl !! n !! k
    a108561_row n = a108561_tabl !! n
    a108561_tabl = map reverse a112465_tabl
    -- Reinhard Zumkeller, Jan 03 2014
    
  • Maple
    A108561 := (n, k) -> add(binomial(n, i)*(-2)^(k-i), i = 0..k):
    seq(seq(A108561(n,k), k = 0..n), n = 0..12); # Peter Bala, Feb 18 2018
  • Mathematica
    Clear[t]; t[n_, 0] = 1; t[n_, n_] := t[n, n] = (-1)^Mod[n, 2]; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 06 2013 *)
  • Sage
    def A108561_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, k) for k in (1..n-1)]+[(-1)^(n+1)]
    for n in (1..12): print(A108561_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: (1-y*x)/(1-x-(y+y^2)*x). - Philippe Deléham, Nov 17 2013
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 17 2013
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..k} binomial(n,i)*(-2)^(k-i), 0 <= k <= n.
The n-th row polynomial is the n-th degree Taylor polynomial of the rational function (1 + x)^n/(1 + 2*x) about 0. For example, for n = 4, (1 + x)^4/(1 + 2*x) = 1 + 2*x + 2*x^2 + x^4 + O(x^5). (End)

Extensions

Definition corrected by Philippe Deléham, Dec 26 2013

A128209 Jacobsthal numbers(A001045) + 1.

Original entry on oeis.org

1, 2, 2, 4, 6, 12, 22, 44, 86, 172, 342, 684, 1366, 2732, 5462, 10924, 21846, 43692, 87382, 174764, 349526, 699052, 1398102, 2796204, 5592406, 11184812, 22369622, 44739244, 89478486, 178956972, 357913942, 715827884, 1431655766, 2863311532, 5726623062
Offset: 0

Views

Author

Paul Barry, Feb 19 2007

Keywords

Comments

Row sums of A128208.
Essentially the same as A052953. - R. J. Mathar, Jun 14 2008
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n >= 1, a(n+1) is the number of different representations of matrix P^(-1)+I+P by sum of permutation matrices. - Vladimir Shevelev, Apr 12 2010
a(n) is the rank of Fibonacci(n+2) in row n of A049456 (regarded as an irregular triangle read by rows). - N. J. A. Sloane, Nov 23 2016

References

  • V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]

Crossrefs

Programs

Formula

a(n) = 1 + 2^n/3 - (-1)^n/3.
G.f.: (1-3*x^2)/(1 - 2*x - x^2 + 2*x^3).

A103196 a(n) = (1/9)(2^(n+3)-(-1)^n(3n-1)).

Original entry on oeis.org

1, 2, 3, 8, 13, 30, 55, 116, 225, 458, 907, 1824, 3637, 7286, 14559, 29132, 58249, 116514, 233011, 466040, 932061, 1864142, 3728263, 7456548, 14913073, 29826170, 59652315, 119304656, 238609285, 477218598, 954437167
Offset: 0

Views

Author

Creighton Dement, Mar 18 2005

Keywords

Comments

A floretion-generated sequence relating to the Jacobsthal sequence A001045 as well as to A095342 (Number of elements in n-th string generated by a Kolakoski(5,1) rule starting with a(1)=1). (a(n)) may be seen as the result of a certain transform of the natural numbers (see program code).
Floretion Algebra Multiplication Program, FAMP Code: 4jesleftforseq[A*B] with A = + 'i + 'j + i' + j' + 'ii' + 'jj' + 'ij' + 'ji' + e and B = - .25'i + .25'j + .25'k + .25i' - .25j' + .25k' - .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' - .25'ki' - .25'kj' - .25e; 1vesforseq[A*B](n) = n, ForType: 1A.

Crossrefs

Programs

  • Mathematica
    Table[(2^(n+3)-(-1)^n (3n-1))/9,{n,0,30}] (* or *) LinearRecurrence[ {0,3,2},{1,2,3},40] (* Harvey P. Dale, Jul 09 2018 *)

Formula

G.f. (2x+1)/((1-2x)(x+1)^2); Superseeker results: a(n) + a(n+1) = A001045(n+3); a(n+1) - a(n) = A095342(n+1); a(n+2) - a(n+1) - a(n) = A053088(n+1) = A034299(n+1) - A034299(n); a(n) + 2a(n+1) + a(n+2) = 2^(n+3); a(n+2) - 2a(n+1) + a(n) = A053088(n+1) - A053088(n); a(n+2) - a(n) = A001045(n+4) - A001045(n+3) = A052953(n+3) - A052953(n+2) = A026644(n+2) - A026644(n+1);
a(n)=sum{k=0..n+2, (-1)^(n-k)*C(n+2, k)phi(phi(3^k))}; a(n)=sum{k=0..n+2, (-1)^(n-k)*C(n+2, k)(2*3^k/9+C(1, k)/3+4*C(0, k)/9)}; a(n)=sum{k=0..n+2, J(n-k+3)((-1)^(k+1)-2C(1, k)+4C(0, k))} where J(n)=A001045(n); a(n)=A113954(n+2). - Paul Barry, Nov 09 2005
Showing 1-6 of 6 results.