cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113954 Expansion of (1-2x^2)/((1-2x)(1+x)^2).

Original entry on oeis.org

1, 0, 1, 2, 3, 8, 13, 30, 55, 116, 225, 458, 907, 1824, 3637, 7286, 14559, 29132, 58249, 116514, 233011, 466040, 932061, 1864142, 3728263, 7456548, 14913073, 29826170, 59652315, 119304656, 238609285, 477218598, 954437167, 1908874364, 3817748697
Offset: 0

Views

Author

Paul Barry, Nov 09 2005

Keywords

Comments

Inverse binomial transform of phi(phi(3^n)).

Crossrefs

Cf. A103196.

Programs

  • Mathematica
    CoefficientList[Series[(1-2x^2)/((1-2x)(1+x)^2),{x,0,40}],x] (* or *) LinearRecurrence[{0,3,2},{1,0,1},40] (* Harvey P. Dale, Aug 20 2015 *)

Formula

a(n)=3a(n-2)+2a(n-3); a(n)=2^(n+1)/9+(7-3n)(-1)^n/9; a(n)=a(n)=sum{k=0..n, (-1)^(n-k)*C(n, k)phi(phi(3^k))}; a(n)=sum{k=0..n, (-1)^(n-k)*C(n, k)(2*3^k/9+C(1, k)/3+4*C(0, k)/9)}; a(n)=sum{k=0..n, J(n-k+1)((-1)^(k+1)-2C(1, k)+4C(0, k))} where J(n)=A001045(n).

A139790 a(n) = (5*2^(n+2) - 3*n*2^n - 2*(-1)^n) / 18.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 7, -7, -57, -199, -569, -1479, -3641, -8647, -20025, -45511, -101945, -225735, -495161, -1077703, -2330169, -5009863, -10718777, -22835655, -48467513, -102527431, -216239673, -454848967, -954437177, -1998352839, -4175662649, -8709239239
Offset: 0

Views

Author

Paul Curtz, May 21 2008

Keywords

Comments

Binomial transform of 1,1,0,1,-2,3,-8,13,-30,... (see A113954 and A103196). - R. J. Mathar, Feb 11 2010

Crossrefs

Programs

  • Magma
    [(5*2^(n+2)-3*n*2^n-2*(-1)^n) / 18: n in [0..35]]; // Vincenzo Librandi, Aug 09 2011
  • Mathematica
    LinearRecurrence[{3,0,-4},{1,2,3},40] (* Harvey P. Dale, May 27 2018 *)

Formula

a(n+1) - 2*a(n) = -A001045(n).
G.f.: (1 - x - 3*x^2)/((1+x)*(1-2*x)^2).
a(n) = 3*a(n-1) - 4*a(n-3).

Extensions

Definition replaced with closed formula by R. J. Mathar, Feb 11 2010

A133993 a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 2*a(n-4), n > 3.

Original entry on oeis.org

1, 2, 3, 4, 9, 14, 31, 56, 117, 226, 459, 908, 1825, 3638, 7287, 14560, 29133, 58250, 116515, 233012, 466041, 932062, 1864143, 3728264, 7456549, 14913074, 29826171, 59652316, 119304657, 238609286, 477218599, 954437168, 1908874365, 3817748698, 7635497427
Offset: 0

Views

Author

Paul Curtz, Jan 22 2008

Keywords

Crossrefs

Equals 1 + A103196(n-1) for n>0. - Greg Dresden, Feb 21 2020

Programs

  • Mathematica
    LinearRecurrence[{1,3,-1,-2},{1,2,3,4},40] (* Harvey P. Dale, Aug 03 2018 *)

Formula

a(n) = 1+4*2^n/9+(-1)^n*(n/3-4/9).
G.f.: ( 1+x-2*x^2-4*x^3 ) / ( (2*x-1)*(x-1)*(1+x)^2 ).
a(n) = 3*a(n-2) + 2*a(n-3) - 4, for n>2. - Greg Dresden, Feb 21 2020
E.g.f.: (1/9)*(4*cosh(2*x) + (13 + 3*x)*sinh(x) + cosh(x)*(5 - 3*x + 8*sinh(x))). - Stefano Spezia, Feb 22 2020

Extensions

More terms from Harvey P. Dale, Aug 03 2018
Showing 1-3 of 3 results.