cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049503 a(n) = A005130(n)^2.

Original entry on oeis.org

1, 1, 4, 49, 1764, 184041, 55294096, 47675849104, 117727187246656, 831443906113411600, 16779127803917965290000, 966945347924006310543140625, 159045186822042363450404006250000, 74638947576233124529271587010756250000, 99910846988474589225795290311922220324000000
Offset: 0

Views

Author

Keywords

Comments

Expansion of generating function A_{QT}^(1)(4n).
a(n) is the number of cyclically symmetric and self-complementary plane partitions in a (2n)-cube. - Peter J. Taylor, Jun 17 2015

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.16), p. 199.

Crossrefs

Cf. A005130.

Programs

  • Magma
    [n eq 0 select 1 else &*[(Factorial(3*k+1)/Factorial(n+k))^2: k in [0..n-1]]: n in [0..15]]; // Bruno Berselli, Jun 23 2015
    
  • Mathematica
    f[n_]:=Product[((3 k + 1)!/(n + k)!)^2, {k, 0, n-1}]; Table[f[n], {n, 0, 15}] (* Vincenzo Librandi, Jun 18 2015 *)
  • PARI
    a(n) = 2^n*matdet(matrix(n, n, i, j, i--; j--; binomial(i+j, 2*i-j)/2+binomial(i+j, 2*i-j-1))); \\ Michel Marcus, Jun 18 2015
    
  • Python
    from math import prod, factorial
    def A049503(n): return (prod(factorial(3*k+1) for k in range(n))//prod(factorial(n+k) for k in range(n)))**2 # Chai Wah Wu, Feb 02 2022

Formula

a(n) = 2^n * det U(n), where U(n) is the n X n matrix with entry (i, j) equal to binomial(i+j, 2*i-j)/2 + binomial(i+j, 2*i-j-1). [Ciucu]