A049529 Numbers k such that sum of factorials of digits of k equals pi(k) (A000720).
6500, 6501, 6510, 6511, 6521, 12066, 50372, 175677, 553783, 5224903, 5224923, 5246963, 5302479, 5854093, 5854409, 5854419, 5854429, 5854493, 5855904, 5864049, 5865393, 10990544, 11071599
Offset: 1
Examples
a(10)=5224903 because there are exactly 5!+2!+2!+4!+9!+0!+3! (or 363035) prime numbers less than or equal to 5224903.
Links
- C. Caldwell and G. L. Honaker, Jr., Is pi(6521)=6!+5!+2!+1! unique?, Math. Spectrum, 22:2 (2000/2001) 34-36.
- Shyam Sunder Gupta, Fascinating Factorials
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6521
- Eric Weisstein's World of Mathematics, Factorial
Programs
-
Mathematica
Do[ If[ Apply[ Plus, IntegerDigits[n] ! ] == PrimePi[n], Print[n]], {n, 1, 11100000} ]
-
PARI
isok(n) = my(d=digits(n)); sum(k=1, #d, d[k]!) == primepi(n); \\ Michel Marcus, Nov 07 2018
Comments