Original entry on oeis.org
842, 842, 842, 842, 843, 1444, 5169, 15961, 45612, 363035, 363036, 364472, 368073, 403471, 403489, 403489, 403490, 403494, 403585, 404089, 404172, 725931, 730924
Offset: 1
a(5)=843 because pi(6521)=6!+5!+2!+1!=843.
A066457
Numbers k such that product of factorials of digits of k equals pi(k) (A000720).
Original entry on oeis.org
13, 1512, 1520, 1521, 12016, 12035, 226130351, 209210612202, 209210612212, 209210612220, 209210612221, 13030323000581525
Offset: 1
12016 is a term because there are exactly 1!*2!*0!*1!*6! (or 1440) prime numbers less than or equal to 12016.
pi(209210612202) = 8360755200 = 2!*0!*9!*2!*1!*0!*6!*1!*2!*2!*0!*2!. [Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008]
-
Select[Range[1000000], Times@@( # !&/@IntegerDigits[ # ])==PrimePi[ # ]&]
-
isok(n) = my(d = digits(n)); prod(k=1, #d, d[k]!) == primepi(n); \\ Michel Marcus, May 04 2018
a(8)-a(11) from Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008
A101702
Numbers m such that the sum of the factorials of their digits is equal to the reversal of m.
Original entry on oeis.org
1, 2, 541, 52100, 58504, 66410, 430000, 863180, 8601400, 17927300, 27927300, 31000000, 665100000, 3715000000, 6739630000, 11000000000, 21000000000, 53100000000, 70858000000, 79637300000, 451000000000, 1715000000000, 2715000000000, 48304000000000, 340000000000000, 5520000000000000
Offset: 1
665100000 is in the sequence because reversal(665100000) = 1566 = 6! + 6! + 5! + 1! + 0! + 0! + 0! + 0! + 0!.
-
Do[h = IntegerDigits[n]; l = Length[h]; If[FromDigits[Reverse[IntegerDigits[n]]] == Sum[h[[k]]!, {k, l}], Print[n]], {n, 10^9}]
Showing 1-3 of 3 results.
Comments