cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059256 Primes p such that x^29 = 2 has no solution mod p.

Original entry on oeis.org

59, 233, 349, 523, 929, 1103, 1277, 1451, 1567, 1741, 1973, 2089, 2437, 2843, 3307, 3539, 4003, 4177, 4409, 4583, 4931, 5279, 5569, 5743, 5801, 6091, 6323, 6961, 7019, 7193, 7309, 7541, 8179, 8237, 8353, 8527, 8933, 9049, 9281, 9397, 9629, 9803
Offset: 1

Views

Author

Klaus Brockhaus, Jan 23 2001

Keywords

Comments

Complement of A049561 relative to A000040.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | not exists{x : x in ResidueClassRing(p) | x^29 eq 2} ]; // Vincenzo Librandi, Sep 20 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^29 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[1300]], ok] (* Vincenzo Librandi, Sep 20 2012  *)

A138980 a(0)=1; for n>=1, a(n) = smallest prime > a(n-1) such that (sum{k=0 to n} a(k)) is composite.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 0

Views

Author

Leroy Quet, Apr 05 2008

Keywords

Comments

Although superficially similar to A049561, the two sequences are in fact quite different (see for example A138982).

Crossrefs

Programs

  • Maple
    A138980 := proc(n) option remember ; local i,p ; if n = 0 then 1 ; else for p from nextprime(A138980(n-1)) do if isprime(p) then if not isprime( p+add(A138980(i),i=0..n-1) ) then RETURN(p) ; fi ; fi ; od: fi ; end: seq(A138980(n),n=0..120) ; # R. J. Mathar Apr 30 2008

Extensions

More terms from R. J. Mathar, Apr 30 2008

A138982 Primes not in A138980.

Original entry on oeis.org

2, 59, 163, 283, 311, 313, 383, 461, 541, 587, 619, 653, 857, 991, 1033, 1051, 1069, 1153, 1277, 1367, 1511, 1613, 1693, 1933, 2129, 2179, 2287, 2437, 2473, 2521, 2663, 2731, 2957, 3109, 3167, 3169, 3251, 3343, 3449, 3581, 3631, 3691, 3907, 3919, 4049, 4451, 4639, 4663, 4751, 4793, 5051, 5099, 5227, 5303, 5309, 5381, 5387, 5449, 5521, 5701, 6043, 6091, 6247, 6361, 6451, 6823, 7309, 7393, 7411, 7489, 7541, 7547, 7589, 7759, 7901, 8377, 8501, 8513, 9227, 9281, 9311, 9769
Offset: 1

Views

Author

Leroy Quet and M. F. Hasler, Apr 05 2008

Keywords

Comments

Except for the first term, the sequences A049561 and A138980 both consist of all odd primes except for 59, up to p=163 which is in A049561 but not in A138980.

Crossrefs

Programs

  • PARI
    s=a=1;for(i=1,10^3,/*print1(","a);*/ while(isprime( s+a=nextprime(a+1) ),print1(a","));s+=a) /*using instead the commented-out print() command yields the sequence A138980.*/
Showing 1-3 of 3 results.