cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049561 Primes p such that x^29 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Keywords

Comments

Complement of A059256 relative to A000040. - Vincenzo Librandi, Sep 14 2012

Examples

			0^29 == 2 (mod 2). 2^29 == 2 (mod 3). 2^29 == 2 (mod 5). 4^29 == 2 (mod 7). 6^29 == 2 (mod 11). 6^29 == 2 (mod 13). 15^29 == 2 (mod 17). 13^29 == 2 (mod 19). 3^29 == 2 (mod 23). 2^29 == 2 (mod 29). 16^29 == 2 (mod 31). 32^29 == 2 (mod 37). 20^29 == 2 (mod 41). 2^29 == 2 (mod 43). - _R. J. Mathar_, Jul 20 2025
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(300) | exists(t){x : x in ResidueClassRing(p) | x^29 eq 2}]; // Vincenzo Librandi, Sep 14 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^29 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 14 2012 *)

A248572 a(n) = 29*n + 1.

Original entry on oeis.org

1, 30, 59, 88, 117, 146, 175, 204, 233, 262, 291, 320, 349, 378, 407, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1277, 1306, 1335, 1364, 1393, 1422
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 08 2014

Keywords

Comments

Numbers congruent to 1 mod 29.
Both A141977 and A059256 give the primes in this sequence.

Examples

			For n = 5, 29n + 1 = 145 + 1 = 146.
		

Crossrefs

Cf. A141977 (Primes congruent to 1 mod 29).
Cf. A059256 (Primes p such that x^29 = 2 has no solution mod p).
Cf. A195819 (multiples of 29).

Programs

  • GAP
    List([0..60], n-> 29*n+1); # G. C. Greubel, May 24 2019
  • Magma
    [29*n+1: n in [0..60]]; // Vincenzo Librandi, Oct 26 2014
    
  • Mathematica
    29Range[0, 60] + 1 (* Alonso del Arte, Oct 09 2014 *)
    CoefficientList[Series[(1+28x)/(1-x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 26 2014 *)
    LinearRecurrence[{2,-1},{1,30},50] (* Harvey P. Dale, Oct 08 2019 *)
  • PARI
    vector(60, n, n--; 29*n+1) \\ Derek Orr, Oct 08 2014
    
  • Python
    for n in range(61):
        print(29*n+1, end=', ')
    
  • Sage
    [29*n+1 for n in (0..60)] # G. C. Greubel, May 24 2019
    

Formula

a(n) = 29*n + 1.
G.f.: (1+28*x)/(1-x)^2. - Vincenzo Librandi, Oct 26 2014 [corrected by Georg Fischer, May 24 2019]
E.g.f.: (1 + 29*x)*exp(x). - G. C. Greubel, May 24 2019
Showing 1-2 of 2 results.