cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049564 Primes p such that x^32 = 2 has a solution mod p.

Original entry on oeis.org

2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039
Offset: 1

Views

Author

Keywords

Comments

Complement of A059349 relative to A000040. - Vincenzo Librandi, Sep 14 2012

Examples

			0^32 == 2 (mod 2). 3^32 == 2 (mod 7). 11^32 == 2 (mod 23). 8^32 == 2 (mod 31). 22^32 == 2 (mod 47). 29^32 == 2 (mod 71). 4^32 == 2 (mod 73). 6^32 == 2 (mod 79). 6^32 == 2 (mod 89). - _R. J. Mathar_, Jul 20 2025
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^32 eq 2}]; // Vincenzo Librandi, Sep 14 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^32 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 14 2012 *)