cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A014663 Primes p such that multiplicative order of 2 modulo p is odd.

Original entry on oeis.org

7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039, 1063
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Or, primes p which do not divide 2^n+1 for any n.
The possibility n=0 in the above rules out A072936(1)=2; apart from this, a(n)=A072936(n+1). - M. F. Hasler, Dec 08 2007
The order of 2 mod p is odd iff 2^k=1 mod p, where p-1=2^s*k, k odd. - M. F. Hasler, Dec 08 2007
Has density 7/24 (Hasse).
From Jianing Song, Jun 27 2025: (Start)
The multiplicative order of 2 modulo a(n) is A139686(n).
Contained in primes congruent to 1 or 7 modulo 8 (primes p such that 2 is a quadratic residue modulo p, A001132), and contains primes congruent to 7 modulo 8 (A007522). (End)

References

  • Christopher Adler and Jean-Paul Allouche (2022), Finite self-similar sequences, permutation cycles, and music composition, Journal of Mathematics and the Arts, 16:3, 244-261, DOI: 10.1080/17513472.2022.2116745.
  • P. Moree, Appendix to V. Pless et al., Cyclic Self-Dual Z_4 Codes, Finite Fields Applic., vol. 3 pp. 48-69, 1997.

Crossrefs

Cf. Complement in primes of A091317.
Cf. A001132, A007522, A040098, A045315, A049564, A139686 (the actual multiplicative orders).
Cf. Essentially the same as A072936 (except for missing leading term 2).
Cf. other bases: this sequence (base 2), A385220 (base 3), A385221 (base 4), A385192 (base 5), A163183 (base -2), A385223 (base -3), A385224 (base -4), A385225 (base -5).

Programs

  • Mathematica
    okQ[p_] := OddQ[MultiplicativeOrder[2, p]];
    Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
  • PARI
    isA014663(p)=1==Mod(1,p)<<((p-1)>>factor(p-1,2)[1,2])
    listA014663(N=1000)=forprime(p=3,N,isA014663(p)&print1(p", ")) \\ M. F. Hasler, Dec 08 2007
    
  • PARI
    lista(nn) = {forprime(p=3, nn, if (znorder(Mod(2, p)) % 2, print1(p, ", ")););} \\ Michel Marcus, Feb 06 2015

Extensions

Edited by M. F. Hasler, Dec 08 2007
More terms from Max Alekseyev, Feb 06 2010

A072936 Primes p that do not divide 2^x+1 for any x>=1.

Original entry on oeis.org

2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039, 1063
Offset: 1

Views

Author

Benoit Cloitre, Aug 20 2002

Keywords

Comments

Also, primes p such that p^2 does not divide 2^x+1 for any x>=1.
A prime p cannot divide 2^x+1 if the multiplicative order of 2 (mod p) is odd. - T. D. Noe, Aug 22 2004
Differs from A049564 first at p=6529, which is the 250th entry in A049564 related to 279^32 =2 mod 6529, but absent here because 6529 divides 2^51+1. [From R. J. Mathar, Sep 25 2008]

References

  • A. K. Devaraj, "Euler's Generalization of Fermat's Theorem-A Further Generalization", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.

Crossrefs

Cf. A040098, A049096, A014664 (multiplicative order of 2 mod n-th prime).

Extensions

Edited by T. D. Noe, Aug 22 2004

A059349 Primes p such that x^32 = 2 has no solution mod p.

Original entry on oeis.org

3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 83, 97, 101, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, 211, 227, 229, 241, 251, 257, 269, 277, 281, 283, 293, 307, 313, 317, 331, 347, 349, 353, 373, 379, 389, 397, 401, 409, 419
Offset: 1

Views

Author

Klaus Brockhaus, Jan 27 2001

Keywords

Comments

Complement of A049564 relative to A000040.
Differs from A014662 first at p=6529, then at p=21569. [R. J. Mathar, Oct 05 2008]
Differs from A045316 (x^8 == 2 (mod p) has no solution) first at a(37) = 257 which is not a term of A045316. See A070184 for all such terms. - M. F. Hasler, Jun 21 2024

Crossrefs

Cf. A070184 = (this sequence) \ A045316.

Programs

  • Magma
    [p: p in PrimesUpTo(450) | not exists{x : x in ResidueClassRing(p) | x^32 eq 2 }]; // Vincenzo Librandi, Sep 20 2012
  • Mathematica
    ok[p_] := Reduce[Mod[x^32 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[100]], ok ] (* Vincenzo Librandi, Sep 20 2012  *)
Showing 1-3 of 3 results.