A072935 Duplicate of A072936.
2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
okQ[p_] := OddQ[MultiplicativeOrder[2, p]]; Select[Prime[Range[1000]], okQ] (* Jean-François Alcover, Nov 23 2024 *)
isA014663(p)=1==Mod(1,p)<<((p-1)>>factor(p-1,2)[1,2]) listA014663(N=1000)=forprime(p=3,N,isA014663(p)&print1(p", ")) \\ M. F. Hasler, Dec 08 2007
lista(nn) = {forprime(p=3, nn, if (znorder(Mod(2, p)) % 2, print1(p, ", ")););} \\ Michel Marcus, Feb 06 2015
9 is here because 2^9 + 1 = 513 is divisible by 9. 99 is here because 2^99 + 1 = 3^3*19*67*683*5347*20857*242099935645987 is divisible by 9, i.e. is not squarefree.
[n: n in [3..220] | not IsSquarefree(2^n+1)]; // Vincenzo Librandi, Mar 08 2018
remove(n -> numtheory:-issqrfree(2^n+1), [$1..250]); # Robert Israel, Jul 07 2014
Select[Range[243], !SquareFreeQ[2^# + 1] &] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011*)
is(n)=!issquarefree(2^n+1) \\ Altug Alkan, Nov 20 2015
Do[n=8*Prime[k];f=2^n+1;If[PrimeQ[f/257],Print[{n,n/8}]],{k,1,2570}]
Table[p = Prime[n]; s = Select[Range[p/2], PowerMod[2, #, p] == p - 1 &, 1]; If[s == {}, 0, s[[1]]], {n, 100}]
Comments