cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A282269 The smallest square referenced in A049096 (Numbers n such that 2^n + 1 is divisible by a square > 1).

Original entry on oeis.org

9, 9, 25, 9, 9, 9, 25, 9, 9, 9, 25, 9, 121, 9, 9, 289, 9, 25, 9, 169, 9, 9, 25, 9, 9, 9, 25, 9, 9, 9, 9, 25, 9, 9, 9, 25, 9, 9, 9, 25, 9, 9, 9, 9, 25, 9, 9, 289, 9, 25, 9, 9, 9, 25, 9, 169, 9, 9, 9, 25, 9, 9, 9, 25, 9, 121, 9, 9, 25, 9, 9, 1849, 9, 9, 25, 9
Offset: 1

Views

Author

Robert Price, Feb 10 2017

Keywords

Crossrefs

A282270 The square root of the smallest square referenced in A049096 (Numbers n such that 2^n + 1 is divisible by a square > 1).

Original entry on oeis.org

3, 3, 5, 3, 3, 3, 5, 3, 3, 3, 5, 3, 11, 3, 3, 17, 3, 5, 3, 13, 3, 3, 5, 3, 3, 3, 5, 3, 3, 3, 3, 5, 3, 3, 3, 5, 3, 3, 3, 5, 3, 3, 3, 3, 5, 3, 3, 17, 3, 5, 3, 3, 3, 5, 3, 13, 3, 3, 3, 5, 3, 3, 3, 5, 3, 11, 3, 3, 5, 3, 3, 43, 3, 3, 5, 3, 3, 3, 5, 3, 3, 17, 3, 5
Offset: 1

Views

Author

Robert Price, Feb 10 2017

Keywords

Crossrefs

A049094 Numbers m such that 2^m - 1 is divisible by a square > 1.

Original entry on oeis.org

6, 12, 18, 20, 21, 24, 30, 36, 40, 42, 48, 54, 60, 63, 66, 72, 78, 80, 84, 90, 96, 100, 102, 105, 108, 110, 114, 120, 126, 132, 136, 138, 140, 144, 147, 150, 155, 156, 160, 162, 168, 174, 180, 186, 189, 192, 198, 200, 204, 210, 216, 220, 222, 228, 231, 234, 240
Offset: 1

Views

Author

Keywords

Comments

Conjecture: 2^n-1 is squarefree iff gcd(n,2^n-1)=1. If true, the conjecture would imply that Mersenne numbers (A001348) are squarefree. - Vladeta Jovovic, Apr 12 2002. But the conjecture is not true: counterexamples are n = 364 and n = 1755, i.e., gcd(364,2^364-1) = 1 and (2^364-1) mod 1093^2 = 0 and gcd(1755,2^1755-1) = 1 and (2^1755-1) mod 3511^2 = 0, cf. A001220. - Vladeta Jovovic, Nov 01 2005. The conjecture is true with assumption that n is not a multiple of A002326((q-1)/2), where q is a Wieferich prime A001220. - Thomas Ordowski, Nov 17 2015
If d|n and 2^d-1 is not squarefree, then 2^n-1 cannot be squarefree. For example, if 6 is in the sequence then 6*d is also. - Enrique Pérez Herrero, Feb 28 2009
If p(p-1)|n then p^2|2^n-1, where p is an odd prime. - Thomas Ordowski, Jan 22 2014
The primitive elements of this sequence are A237043. - Charles R Greathouse IV, Feb 05 2014
Dilcher & Ericksen prove that this sequence is exactly the set of numbers divisible by either t(p)p for a Wieferich prime p>2 or t(p) for a non-Wieferich prime p, where t(p) is the order of 2 modulo p (see Proposition 3.1). - Kellen Myers, Jun 09 2015
If d^2 divides 2^n-1 then d divides n, where n is not a multiple of 364, 1755, ...; i.e., A002326((q-1)/2) for Wieferich primes q, A001220. - Thomas Ordowski, Nov 15 2015
(1, 2^n-1, 2^n) is an abc triple iff 2^n-1 is not squarefree. - William Hu, Jul 04 2024

Examples

			a(2)=12 because 2^12 - 1 = 4095 = 5*(3^2)*7*13 is divisible by a square.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A3.

Crossrefs

Programs

  • Magma
    [n: n in [1..250] | not IsSquarefree(2^n-1)]; // Vincenzo Librandi, Jul 14 2015
  • Maple
    N:= 250:
    B:= Vector(N):
    for n from 1 to N do
      if B[n] <> 1 then
        F:= ifactors(2^n-1,easy)[2];
        if max(seq(t[2],t=F)) > 1 or (hastype(F,symbol)
                and not numtheory:-issqrfree(2^n-1)) then
           B[[seq(n*k,k=1..floor(N/n))]]:= 1;
        fi
      fi;
    od:
    select(t -> B[t]=1, [$1..N]); # Robert Israel, Nov 17 2015
  • Mathematica
    Select[Range[240], !SquareFreeQ[2^#-1]&] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
  • PARI
    default(factor_add_primes,1);
    is(n)=my(f=factor(n>>valuation(n,2))[,1],N,o); for(i=1,#f,if(n%(f[i]-1) == 0, return(1))); N=2^n-1; fordiv(n,d,f=factor(2^d-1)[,1]; for(i=1,#f, if(d==n,return(!issquarefree(N))); o=valuation(N,f[i]); if(o>1, return(1)); N/=f[i]^o)) \\ Charles R Greathouse IV, Feb 02 2014
    
  • PARI
    is(n)=!issquarefree(2^n-1) \\ Charles R Greathouse IV, Feb 04 2014
    

Extensions

More terms from Vladeta Jovovic, Apr 12 2002
Definition corrected by Jonathan Sondow, Jun 29 2010

A077643 Number of squarefree integers in closed interval [2^n, -1 + 2*2^n], i.e., among 2^n consecutive numbers beginning with 2^n.

Original entry on oeis.org

1, 2, 3, 5, 9, 19, 39, 79, 157, 310, 621, 1246, 2491, 4980, 9958, 19924, 39844, 79672, 159365, 318736, 637457, 1274916, 2549816, 5099651, 10199363, 20398663, 40797299, 81594571, 163189087, 326378438, 652756861, 1305513511, 2611026987, 5222053970, 10444108084
Offset: 0

Views

Author

Labos Elemer, Nov 14 2002

Keywords

Comments

Number of squarefree numbers with binary expansion of length n, or with n bits. The sum of these numbers is given by A373123. - Gus Wiseman, Jun 02 2024

Examples

			For n=4: among the 16 numbers of {16, ..., 31}, nine are squarefree [17, 19, 21, 22, 23, 26, 29, 30, 31], so a(4) = 9.
		

Crossrefs

Partial sums (except first term) are A143658.
Run-lengths of A372475.
The minimum is A372683, delta A373125, indices A372540.
The maximum is A372889 (except at n=1), delta A373126, indices A143658.
Row-sums are A373123.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives nonempty lengths of exclusive gaps between squarefree numbers.
A029837 counts bits, row-lengths of A030190 and A030308.
For primes between powers of 2:
- sum A293697
- length A036378 or A162145
- min A104080 or A014210, delta A092131, indices A372684
- max A014234, delta A013603, indices A007053
For squarefree numbers between primes:
- sum A373197
- length A373198 = A061398 - 1
- min A000040
- max A112925 (delta A240473), opposite A112926 (delta A240474)
Cf. A010036, A029931, A035100, A049093-A049096, A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Apply[Plus, Table[Abs[MoebiusMu[2^w+j]], {j, 0, 2^w-1}]], {w, 0, 15}]
    (* second program *)
    Length/@Split[IntegerLength[Select[Range[10000],SquareFreeQ],2]]//Most (* Gus Wiseman, Jun 02 2024 *)
  • PARI
    { a(n) = sum(m=1,sqrtint(2^(n+1)-1), moebius(m) * ((2^(n+1)-1)\m^2 - (2^n-1)\m^2) ) } \\ Max Alekseyev, Oct 18 2008

Formula

a(n) = Sum_{j=0..-1+2^n} abs(mu(2^n + j)).
a(n)/2^n approaches 1/zeta(2), so limiting sequence is floor(2^n/zeta(2)), n >= 0. - Wouter Meeussen, May 25 2003

Extensions

More terms from Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 12 2003
More terms from Wouter Meeussen, May 25 2003
a(25)-a(32) from Max Alekseyev, Oct 18 2008
a(33)-a(34) from Amiram Eldar, Jul 17 2024

A372683 Least squarefree number >= 2^n.

Original entry on oeis.org

1, 2, 5, 10, 17, 33, 65, 129, 257, 514, 1027, 2049, 4097, 8193, 16385, 32770, 65537, 131073, 262145, 524289, 1048577, 2097154, 4194305, 8388609, 16777217, 33554433, 67108865, 134217730, 268435457, 536870913, 1073741826, 2147483649, 4294967297, 8589934594
Offset: 0

Views

Author

Gus Wiseman, May 26 2024

Keywords

Examples

			The terms together with their binary expansions and binary indices begin:
       1:                    1 ~ {1}
       2:                   10 ~ {2}
       5:                  101 ~ {1,3}
      10:                 1010 ~ {2,4}
      17:                10001 ~ {1,5}
      33:               100001 ~ {1,6}
      65:              1000001 ~ {1,7}
     129:             10000001 ~ {1,8}
     257:            100000001 ~ {1,9}
     514:           1000000010 ~ {2,10}
    1027:          10000000011 ~ {1,2,11}
    2049:         100000000001 ~ {1,12}
    4097:        1000000000001 ~ {1,13}
    8193:       10000000000001 ~ {1,14}
   16385:      100000000000001 ~ {1,15}
   32770:     1000000000000010 ~ {2,16}
   65537:    10000000000000001 ~ {1,17}
  131073:   100000000000000001 ~ {1,18}
  262145:  1000000000000000001 ~ {1,19}
  524289: 10000000000000000001 ~ {1,20}
		

Crossrefs

For primes instead of powers of two we have A112926, opposite A112925, sum A373197, length A373198.
Counting zeros instead of all bits gives A372473, firsts of A372472.
These are squarefree numbers at indices A372540, firsts of A372475.
Counting ones instead of all bits gives A372541, firsts of A372433.
The opposite (greatest squarefree number <= 2^n) is A372889.
The difference from 2^n is A373125.
For prime instead of squarefree we have:
- bits A372684, firsts of A035100
- zeros A372474, firsts of A035103
- ones A372517, firsts of A014499
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308, length A070939 or A029837.
A061398 counts squarefree numbers between primes (exclusive).
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&],{n,0,10}]
  • PARI
    a(n) = my(k=2^n); while (!issquarefree(k), k++); k; \\ Michel Marcus, May 29 2024
    
  • Python
    from itertools import count
    from sympy import factorint
    def A372683(n): return next(i for i in count(1<Chai Wah Wu, Aug 26 2024

Formula

a(n) = A005117(A372540(n)).
a(n) = A067535(2^n). - R. J. Mathar, May 31 2024

A373125 Difference between 2^n and the least squarefree number >= 2^n.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 28 2024

Keywords

Crossrefs

For prime instead of squarefree we have A092131, opposite A013603.
For primes instead of powers of 2: A240474, A240473, A112926, A112925.
Difference between 2^n and A372683(n).
The opposite is A373126, delta of A372889.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives lengths of gaps between squarefree numbers.
A061398 counts squarefree numbers between primes (exclusive).
A070939 or (preferably) A029837 gives length of binary expansion.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).
For primes between powers of 2:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234, delta A013603

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&]-2^n,{n,0,100}]

Formula

a(n) = A372683(n)-2^n. - R. J. Mathar, May 31 2024

A373126 Difference between 2^n and the greatest squarefree number <= 2^n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 29 2024

Keywords

Examples

			The greatest squarefree number <= 2^21 is 2097149, and 2^21 = 2097152, so a(21) = 3.
		

Crossrefs

For prime instead of squarefree we have A013603, opposite A092131.
For primes instead of powers of 2: A240474, A240473, A112926, A112925.
Difference between 2^n and A372889.
The opposite is A373125, delta of A372683.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives lengths of gaps between squarefree numbers.
A061398 counts squarefree numbers between primes (exclusive).
A070939 or (preferably) A029837 gives length of binary expansion.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).
For primes between powers of 2:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234

Programs

  • Mathematica
    Table[2^n-NestWhile[#-1&,2^n,!SquareFreeQ[#]&],{n,0,100}]

Formula

a(n) = 2^n-A372889(n). - R. J. Mathar, May 31 2024

A049095 Numbers k such that 2^k + 1 is squarefree.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 71, 72, 73, 74, 76, 77, 79, 80, 82, 83, 84, 85, 86, 88, 89, 91, 92, 94, 95
Offset: 1

Views

Author

Keywords

Examples

			8 is in the sequence because 2^8 + 1 = 257 is prime, hence it is squarefree.
9 is not in the sequence because 2^9 + 1 = 513 is divisible by a square, 9.
		

Crossrefs

Complement of A049096.

Programs

  • Mathematica
    Select[Range[0,95], SquareFreeQ[2^# + 1] &] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    isok(n) = issquarefree(2^n + 1); \\ Michel Marcus, Dec 18 2013

Extensions

0 prepended by Jianing Song, May 28 2024

A086982 Numbers n such that 10^n+1 is not squarefree.

Original entry on oeis.org

11, 21, 33, 39, 55, 63, 77, 99, 105, 117, 121, 136, 143, 147, 165, 171, 187, 189, 195, 202, 209, 231, 243, 253, 273, 275, 292, 297, 315, 319, 341, 351, 357, 363, 385, 399, 406, 407, 408, 429, 441, 451, 473, 483, 495, 507, 513, 517, 525, 539, 548, 561, 567
Offset: 1

Views

Author

Ray Chandler, Jul 27 2003

Keywords

Comments

This sequence is the union of the collection of sequences formed from the nonzero terms of A086981 * A005408, the odd numbers. First occurrence of consecutive integers in sequence is 406,407,408.
From Robert Israel, Feb 13 2017: (Start)
Numbers n such that gcd(n, 10^n + 1) > 1 or n = k*m where k is odd and 2*m is the order of 10 modulo a member of A045616. [Corrected by Jianing Song, Nov 01 2024]
If n is in the sequence, then so is k*n for any odd k. (End)
Numbers of the form k*ord(10,p^2)/2, where k is an odd number and p is a prime such that ord(10,p) is even. Here ord(a,m) is the multiplicative order of a modulo m. Note that if p is not in A045616, then ord(10,p^2) = p*ord(10,p). - Jianing Song, Nov 01 2024

Crossrefs

Programs

  • Maple
    filter:= n -> (n mod 243 = 0 and (n/243)::odd) or igcd(n,(10 &^n +1 mod n)) > 1: # Note that this works if n < 28299156
    select(filter, [$1..1000]); # Robert Israel, Feb 13 2017
  • PARI
    ord = [1, 486, 56598312]; \\ order of 10 modulo A045616
    isA086982(n) = if(gcd(n, 10^n+1) > 1, return(1)); for(i=1, 3, if((ord[i] % 2 == 0) && (n % (ord[i]/2) == 0) && (n/(ord[i]/2) % 2 == 1), return(1))); return(0) \\ Jianing Song, Nov 01 2024, after Robert Israel's comment; considering only the three currently-known terms of A045616

A072936 Primes p that do not divide 2^x+1 for any x>=1.

Original entry on oeis.org

2, 7, 23, 31, 47, 71, 73, 79, 89, 103, 127, 151, 167, 191, 199, 223, 233, 239, 263, 271, 311, 337, 359, 367, 383, 431, 439, 463, 479, 487, 503, 599, 601, 607, 631, 647, 719, 727, 743, 751, 823, 839, 863, 881, 887, 911, 919, 937, 967, 983, 991, 1031, 1039, 1063
Offset: 1

Views

Author

Benoit Cloitre, Aug 20 2002

Keywords

Comments

Also, primes p such that p^2 does not divide 2^x+1 for any x>=1.
A prime p cannot divide 2^x+1 if the multiplicative order of 2 (mod p) is odd. - T. D. Noe, Aug 22 2004
Differs from A049564 first at p=6529, which is the 250th entry in A049564 related to 279^32 =2 mod 6529, but absent here because 6529 divides 2^51+1. [From R. J. Mathar, Sep 25 2008]

References

  • A. K. Devaraj, "Euler's Generalization of Fermat's Theorem-A Further Generalization", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.

Crossrefs

Cf. A040098, A049096, A014664 (multiplicative order of 2 mod n-th prime).

Extensions

Edited by T. D. Noe, Aug 22 2004
Showing 1-10 of 16 results. Next