A049094 Numbers m such that 2^m - 1 is divisible by a square > 1.
6, 12, 18, 20, 21, 24, 30, 36, 40, 42, 48, 54, 60, 63, 66, 72, 78, 80, 84, 90, 96, 100, 102, 105, 108, 110, 114, 120, 126, 132, 136, 138, 140, 144, 147, 150, 155, 156, 160, 162, 168, 174, 180, 186, 189, 192, 198, 200, 204, 210, 216, 220, 222, 228, 231, 234, 240
Offset: 1
Keywords
Examples
a(2)=12 because 2^12 - 1 = 4095 = 5*(3^2)*7*13 is divisible by a square.
References
- R. K. Guy, Unsolved Problems in Number Theory, A3.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..296
- Karl Dilcher and Larry Ericksen, The Polynomials of Mahler and Roots of Unity, The American Mathematical Monthly, Vol. 122, No. 04 (April 2015), pp. 338-353.
- Enrique Pérez Herrero, Mersenne Numbers Treasure Map, Psych Geom blogspot, 02/17/09
- Andy Steward, Factorizations of Generalized Repunits [Dead link]
Crossrefs
Programs
-
Magma
[n: n in [1..250] | not IsSquarefree(2^n-1)]; // Vincenzo Librandi, Jul 14 2015
-
Maple
N:= 250: B:= Vector(N): for n from 1 to N do if B[n] <> 1 then F:= ifactors(2^n-1,easy)[2]; if max(seq(t[2],t=F)) > 1 or (hastype(F,symbol) and not numtheory:-issqrfree(2^n-1)) then B[[seq(n*k,k=1..floor(N/n))]]:= 1; fi fi; od: select(t -> B[t]=1, [$1..N]); # Robert Israel, Nov 17 2015
-
Mathematica
Select[Range[240], !SquareFreeQ[2^#-1]&] (* Vladimir Joseph Stephan Orlovsky, Mar 18 2011 *)
-
PARI
default(factor_add_primes,1); is(n)=my(f=factor(n>>valuation(n,2))[,1],N,o); for(i=1,#f,if(n%(f[i]-1) == 0, return(1))); N=2^n-1; fordiv(n,d,f=factor(2^d-1)[,1]; for(i=1,#f, if(d==n,return(!issquarefree(N))); o=valuation(N,f[i]); if(o>1, return(1)); N/=f[i]^o)) \\ Charles R Greathouse IV, Feb 02 2014
-
PARI
is(n)=!issquarefree(2^n-1) \\ Charles R Greathouse IV, Feb 04 2014
Extensions
More terms from Vladeta Jovovic, Apr 12 2002
Definition corrected by Jonathan Sondow, Jun 29 2010
Comments